期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthesis of Graphene Oxide from Hydrogenated Diamond Like Carbon and Protein Immobilization onto It: Characterization and Study of Practical Utility
1
作者 Subhashis Bala Reshmi Bose +3 位作者 Shaona Chaterjee Sanjit Sarkar indranil saha Hari Shankar Biswas 《Journal of Materials Science and Chemical Engineering》 2021年第1期32-41,共10页
In the last few years, Graphene oxide material and biomolecules studies have increased. The various synthesis methods of graphene oxide are constantly pursued to improve and provide safer and more effective alternativ... In the last few years, Graphene oxide material and biomolecules studies have increased. The various synthesis methods of graphene oxide are constantly pursued to improve and provide safer and more effective alternatives. Though the preparation of graphene oxide from Graphite powder or Graphite flake through Hummers method is one of the oldest techniques but still now it is one of the most suitable methods. Here, Graphene Oxide has been prepared from a tunable material Hydrogenated diamond like carbon (HDLC) which is an atomically smooth surface that can be deposited on high-surface area Silicon (100) wafer plate. The HDLC film was heated at a fixed temperature of 900<span style="white-space:nowrap;">&#176;</span>C for 30 min in high vacuum ~1 × 10<sup><span style="white-space:nowrap;">&minus;</span>6</sup> torr and oxygenated at room temperature. A synthetic sequence is described involving Oxidation of annealed HDLC (A-HDLC). Raman measurements confirm the G and D peak by Oxidation of A-HDLC and FTIR confirms functional groups. Atomic force microscopy (AFM) images describe the surface of A-HDLC, Oxidized Graphene and BSA immobilized GO. This GO onto Silicon substrate offers many technical advantages than as oxidized graphene Synthesis from other Chemical methods. 展开更多
关键词 Carbon DIAMOND Graphene Oxide AFM RAMAN FTIR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部