Capillary electrophoresis (CE) suffers from a relatively small sensitivity—at least in case of optical detection transversely to the capillary axis due to the small capillary inner diameters in the range of 50 - 100 ...Capillary electrophoresis (CE) suffers from a relatively small sensitivity—at least in case of optical detection transversely to the capillary axis due to the small capillary inner diameters in the range of 50 - 100 μm. Different concepts like bubble, U-, or Z-cells have been used to tackle that problem already in the nineties of the last century. But the U- and Z-cells have typically been extra cells with larger inner channel diameters and no optimization for optical waveguiding and the bubble cell per se did not allow for optical waveguiding. In the case of on-chip capillary electrophoresis (chip-CE) a U-cell can be implemented quite easily on the chip. Here we show how leaky optical waveguiding can be employed to improve optical detection. Proper U-channel design and preparation by wet-chemical etching of the fused silica sub- and superstrate, making the U-channel bend a part of the optical input lens system, can help to achieve high coupling efficiency with loss coefficients around 2 dB and low waveguiding loss.展开更多
文摘Capillary electrophoresis (CE) suffers from a relatively small sensitivity—at least in case of optical detection transversely to the capillary axis due to the small capillary inner diameters in the range of 50 - 100 μm. Different concepts like bubble, U-, or Z-cells have been used to tackle that problem already in the nineties of the last century. But the U- and Z-cells have typically been extra cells with larger inner channel diameters and no optimization for optical waveguiding and the bubble cell per se did not allow for optical waveguiding. In the case of on-chip capillary electrophoresis (chip-CE) a U-cell can be implemented quite easily on the chip. Here we show how leaky optical waveguiding can be employed to improve optical detection. Proper U-channel design and preparation by wet-chemical etching of the fused silica sub- and superstrate, making the U-channel bend a part of the optical input lens system, can help to achieve high coupling efficiency with loss coefficients around 2 dB and low waveguiding loss.