Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during t...Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.展开更多
The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturba...The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturbances affect health as well as technology and become more extreme when SW is more accelerated. Thus, to better understand the impact of high-speed solar wind (HSSW) invasion on the dynamics of the magnetospheric system, a statistical study of HSSW populations was conducted for even (20 and 22) and odd (21 and 23) solar cycles. The regression analysis using the solar-derived fields from all solar cycles, indicates three states of the inner magnetosphere: 1) the 00:00UT-15:00UT period marked by a magnetic reconnection on the day side of the Earth closest to the Sun with the interplanetary magnetic field (IMF) facing South;2) the 15:00UT-21:00UT period where IMF changes from South to North and remains there until 21:00UT;and 3) the 21:00UT-24:00UT period where there is a reconnection on the night side with stretched field lines. Observations made at different phases of solar activity lead us to suggest that the magnetospheric electric field (E<sub>M</sub>) and the Bz component of IMF (IMF-Bz) are strongly correlated not only at a particular time scale, but at different time scales. We believe that the daily fluctuations of the electrical and magnetic effects of magnetospheric origin currents play a very important role in the dayside magnetic reconnection rate. Moreover, examination of the cycles with different parities shows important amplitudes of the solar causes for the even cycles compared to the odd solar cycles. Therefore, even solar cycles have a strong influence on our socio-economic system compared to odd cycles.展开更多
文摘Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems.
文摘The Earth’s magnetosphere is a magnetic shield that protects Earth from high-energy particles and is subject to a series of internal processes caused by jets of the solar wind (SW) that destabilize it. These disturbances affect health as well as technology and become more extreme when SW is more accelerated. Thus, to better understand the impact of high-speed solar wind (HSSW) invasion on the dynamics of the magnetospheric system, a statistical study of HSSW populations was conducted for even (20 and 22) and odd (21 and 23) solar cycles. The regression analysis using the solar-derived fields from all solar cycles, indicates three states of the inner magnetosphere: 1) the 00:00UT-15:00UT period marked by a magnetic reconnection on the day side of the Earth closest to the Sun with the interplanetary magnetic field (IMF) facing South;2) the 15:00UT-21:00UT period where IMF changes from South to North and remains there until 21:00UT;and 3) the 21:00UT-24:00UT period where there is a reconnection on the night side with stretched field lines. Observations made at different phases of solar activity lead us to suggest that the magnetospheric electric field (E<sub>M</sub>) and the Bz component of IMF (IMF-Bz) are strongly correlated not only at a particular time scale, but at different time scales. We believe that the daily fluctuations of the electrical and magnetic effects of magnetospheric origin currents play a very important role in the dayside magnetic reconnection rate. Moreover, examination of the cycles with different parities shows important amplitudes of the solar causes for the even cycles compared to the odd solar cycles. Therefore, even solar cycles have a strong influence on our socio-economic system compared to odd cycles.