期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrochemical Remediation of 17α-Ethinylestradiol
1
作者 Femando Miguel de Amorim Lino Diogo Cordeiro Dias +3 位作者 Renata Crispim Batista Eric de Souza Gil iranaldo santos da silva Lucio Angnes 《Journal of Chemistry and Chemical Engineering》 2013年第4期344-350,共7页
Technological development has led to the emergence of new substances with many different purposes generating a new profile of pollutants in waterways. Among these, endocrine disruptors, such as 17EE (17ct-ethinylestr... Technological development has led to the emergence of new substances with many different purposes generating a new profile of pollutants in waterways. Among these, endocrine disruptors, such as 17EE (17ct-ethinylestradiol), are of great importance due to their wide application and harmful consequences to the environment, human health and animals. The inefficiency of most water treatment processes in withdrawing such substances poses a global concern for the development of effective and environmentally clean methods. The electrochemical remediation processes appear as a powerful and "green" alternative for waste removal of organic or inorganic pollutants from complex environments, such as geosphere and hydrosphere. The research focus in this field is mostly related to the optimization of electronic devices with higher (photo) catalytic efficiency, whereas the starting material remains based on metal and carbon conventional electrodes. In the present study, the anodic removal process of 17ct-ethinylestradiol at carbon cardboards was investigated in stationary and hydrodynamic conditions. The influence of pH and applied potential were evaluated, always taking into account the transposition of scale and environmental aspects. Thus, the principle of hormone removal showed to be strictly related to such parameters. It was observed that mild alkaline medium favors the anodic oxidation, whereas neutral and mild acid ones lead to higher adsorption at carbon surface. Also, when the applied potential was higher than 1.25 V, the electrochemical oxidation rate increased, and the adsorption was decreased. Furthermore, the removal efficiency of ! 7EE showed to be lower, the flow rate was higher. 展开更多
关键词 Endocrine disruptors ETHINYLESTRADIOL electrochemical remediation carbon electrodes.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部