期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cartesian Product Based Transfer Learning Implementation for Brain Tumor Classification
1
作者 irfan ahmed usmani Muhammad Tahir Qadri +2 位作者 Razia Zia Asif Aziz Farheen Saeed 《Computers, Materials & Continua》 SCIE EI 2022年第11期4369-4392,共24页
Knowledge-based transfer learning techniques have shown good performance for brain tumor classification,especially with small datasets.However,to obtain an optimized model for targeted brain tumor classification,it is... Knowledge-based transfer learning techniques have shown good performance for brain tumor classification,especially with small datasets.However,to obtain an optimized model for targeted brain tumor classification,it is challenging to select a pre-trained deep learning(DL)model,optimal values of hyperparameters,and optimization algorithm(solver).This paper first presents a brief review of recent literature related to brain tumor classification.Secondly,a robust framework for implementing the transfer learning technique is proposed.In the proposed framework,a Cartesian product matrix is generated to determine the optimal values of the two important hyperparameters:batch size and learning rate.An extensive exercise consisting of 435 simulations for 11 state-of-the-art pre-trained DL models was performed using 16 paired hyperparameters from the Cartesian product matrix to input the model with the three most popular solvers(stochastic gradient descent with momentum(SGDM),adaptive moment estimation(ADAM),and root mean squared propagation(RMSProp)).The 16 pairs were formed using individual hyperparameter values taken from literature,which generally addressed only one hyperparameter for optimization,rather than making a grid for a particular range.The proposed framework was assessed using a multi-class publicly available dataset consisting of glioma,meningioma,and pituitary tumors.Performance assessment shows that ResNet18 outperforms all other models in terms of accuracy,precision,specificity,and recall(sensitivity).The results are also compared with existing state-of-the-art research work that used the same dataset.The comparison was mainly based on performance metric“accuracy”with support of three other parameters“precision,”“recall,”and“specificity.”The comparison shows that the transfer learning technique,implemented through our proposed framework for brain tumor classification,outperformed all existing approaches.To the best of our knowledge,the proposed framework is an efficient framework that helped reduce the computational complexity and the time to attain optimal values of two important hyperparameters and consequently the optimized model with an accuracy of 99.56%. 展开更多
关键词 Deep transfer learning Cartesian product hyperparameter optimization magnetic resonance imaging(MRI) brain tumor classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部