A Percolation reactor for the thermochemical pre-treatment of lignocellulosic biomass as a precursor for the production of biofuel such as bioethanol from complex organic polymers is developed by this study. The react...A Percolation reactor for the thermochemical pre-treatment of lignocellulosic biomass as a precursor for the production of biofuel such as bioethanol from complex organic polymers is developed by this study. The reactor is designed to hold 3 kg of pulverised biomass of 0.5≤ and ≥0.3 mm particle size for each hydrolysis run, while the mass of other biomass is determined on the basis of density. It consists of a perforated material holding basket which is 0.0261 m3 in volume, a circulation pump with a power rating of 1.83 W capacity and a heating chamber containing 3 kW heater. The reactor is designed to operate within the temperature range of 20°C - 180°C, pressure≤ 45 N·m-2, and desired hydrolysis flow rate of 4.33 × 10-4 m3·S-1. The Percolation reactor produced high sugar yield with instant discharge of sugar products after each completed hydrolysis cycle, thus minimizing sugar decomposition. The efficiency of the percolation reactor was determined to be 64.4% ± 2% in the hydrolysis of biomass such as cassava peelings to simple sugar. The reactor is therefore a useful tool at converting lignocellulosic biomass to fermentable sugar with high sugar concentration in solid/liquid ratio.展开更多
文摘A Percolation reactor for the thermochemical pre-treatment of lignocellulosic biomass as a precursor for the production of biofuel such as bioethanol from complex organic polymers is developed by this study. The reactor is designed to hold 3 kg of pulverised biomass of 0.5≤ and ≥0.3 mm particle size for each hydrolysis run, while the mass of other biomass is determined on the basis of density. It consists of a perforated material holding basket which is 0.0261 m3 in volume, a circulation pump with a power rating of 1.83 W capacity and a heating chamber containing 3 kW heater. The reactor is designed to operate within the temperature range of 20°C - 180°C, pressure≤ 45 N·m-2, and desired hydrolysis flow rate of 4.33 × 10-4 m3·S-1. The Percolation reactor produced high sugar yield with instant discharge of sugar products after each completed hydrolysis cycle, thus minimizing sugar decomposition. The efficiency of the percolation reactor was determined to be 64.4% ± 2% in the hydrolysis of biomass such as cassava peelings to simple sugar. The reactor is therefore a useful tool at converting lignocellulosic biomass to fermentable sugar with high sugar concentration in solid/liquid ratio.