Chronic functional mitral regurgitation(FMR) is a frequent finding of ischemic heart disease and dilated cardiomyopathy(DCM), associated with unfavourable prognosis. Several pathophysiologic mechanisms are involved in...Chronic functional mitral regurgitation(FMR) is a frequent finding of ischemic heart disease and dilated cardiomyopathy(DCM), associated with unfavourable prognosis. Several pathophysiologic mechanisms are involved in FMR, such as annular dilatation and dysfunction, left ventricle(LV) remodeling, dysfunction and dyssynchrony, papillary muscles displacement and dyssynchrony. The best therapeutic choice for FMR is still debated. When optimal medical treatment has already been set, a further option for cardiac resynchronization therapy(CRT) and/or surgical correction should be considered. CRT is able to contrast most of the pathophysiologic determinants of FMR by minimizing LV dyssynchrony through different mechanisms: Increasing closing forces, reducing tethering forces, reshaping annular geometry and function, correcting diastolic MR. Deformation imaging in terms of two-dimensional speckle tracking has been validated for LV dyssynchrony assessment. Radial speckle tracking and three-dimensional strain analysis appear to be the best methods to quantify intraventricular delay and to predict CRT-responders. Speckle-tracking echocardiography in patients with mitral valve regurgitation has been usually proposed for the assessment of LV and left atrial function. However it has also revealed a fundamental role of intraventricular dyssynchrony in determining FMR especially in DCM, rather than in ischemic cardiomyopathy in which MR severity seems to be more related to mitral valve deformation indexes. Furthermore speckle tracking allows the assessment of papillary muscle dyssynchrony. Therefore this technique can help to identify optimal candidates to CRT that will probably demonstrate a reduction in FMR degree and thus will experience a better outcome.展开更多
文摘Chronic functional mitral regurgitation(FMR) is a frequent finding of ischemic heart disease and dilated cardiomyopathy(DCM), associated with unfavourable prognosis. Several pathophysiologic mechanisms are involved in FMR, such as annular dilatation and dysfunction, left ventricle(LV) remodeling, dysfunction and dyssynchrony, papillary muscles displacement and dyssynchrony. The best therapeutic choice for FMR is still debated. When optimal medical treatment has already been set, a further option for cardiac resynchronization therapy(CRT) and/or surgical correction should be considered. CRT is able to contrast most of the pathophysiologic determinants of FMR by minimizing LV dyssynchrony through different mechanisms: Increasing closing forces, reducing tethering forces, reshaping annular geometry and function, correcting diastolic MR. Deformation imaging in terms of two-dimensional speckle tracking has been validated for LV dyssynchrony assessment. Radial speckle tracking and three-dimensional strain analysis appear to be the best methods to quantify intraventricular delay and to predict CRT-responders. Speckle-tracking echocardiography in patients with mitral valve regurgitation has been usually proposed for the assessment of LV and left atrial function. However it has also revealed a fundamental role of intraventricular dyssynchrony in determining FMR especially in DCM, rather than in ischemic cardiomyopathy in which MR severity seems to be more related to mitral valve deformation indexes. Furthermore speckle tracking allows the assessment of papillary muscle dyssynchrony. Therefore this technique can help to identify optimal candidates to CRT that will probably demonstrate a reduction in FMR degree and thus will experience a better outcome.