The Wheat dwarf virus, the causal agent of the wheat dwarf disease, is trans- mitted by leafhoppers from the genus Psammotettix and currently the main protection strategy is based on the use of insecticide treatments....The Wheat dwarf virus, the causal agent of the wheat dwarf disease, is trans- mitted by leafhoppers from the genus Psammotettix and currently the main protection strategy is based on the use of insecticide treatments. Sustainable management strategies for insect vectors should include methods that are targeted to disrupt reproductive behavior and here we investigated the mating behavior of Psammotettix alineus (Dahlbom 1850) in order to determine the role of vibrational signals in intra-specific communication and pair formation. Both genders spontaneously emit species- and sex-specific calling songs that consisted of regularly repeated pulse trains and differ primarily in pulse train duration and pulse repetition time. Females preferred the conspecific male calling song. After a coordinated exchange of pulse trains, the male approached the stationary female. During the close range courtship and also immediately prior to copulatory attempts distinct male vibrational signals associated with wing flapping and wing vibrations were recorded from the substrate. In the presence of a receptive female, competing males emitted vibrational signals most likely aimed to interfere with male-female interaction. Mated females re- gained sexual receptivity after they laid eggs. Although results suggest that the viruliferous status of insects may have an effect on vibrational songs, our current results did not reveal a significant effect of virus on leafhopper performance in mating behavior. However, this study also suggests, that detailed understanding ofplant-vecto^virus interactions relevant for vector mating behavior is essential for trying new approaches in developing future control practices against plant viruses transmitted by insect vectors.展开更多
文摘The Wheat dwarf virus, the causal agent of the wheat dwarf disease, is trans- mitted by leafhoppers from the genus Psammotettix and currently the main protection strategy is based on the use of insecticide treatments. Sustainable management strategies for insect vectors should include methods that are targeted to disrupt reproductive behavior and here we investigated the mating behavior of Psammotettix alineus (Dahlbom 1850) in order to determine the role of vibrational signals in intra-specific communication and pair formation. Both genders spontaneously emit species- and sex-specific calling songs that consisted of regularly repeated pulse trains and differ primarily in pulse train duration and pulse repetition time. Females preferred the conspecific male calling song. After a coordinated exchange of pulse trains, the male approached the stationary female. During the close range courtship and also immediately prior to copulatory attempts distinct male vibrational signals associated with wing flapping and wing vibrations were recorded from the substrate. In the presence of a receptive female, competing males emitted vibrational signals most likely aimed to interfere with male-female interaction. Mated females re- gained sexual receptivity after they laid eggs. Although results suggest that the viruliferous status of insects may have an effect on vibrational songs, our current results did not reveal a significant effect of virus on leafhopper performance in mating behavior. However, this study also suggests, that detailed understanding ofplant-vecto^virus interactions relevant for vector mating behavior is essential for trying new approaches in developing future control practices against plant viruses transmitted by insect vectors.