All genes encoding chloroplast antioxidant enzymes are nuclear-encoded and posttranscriptionally targeted to chloroplasts. The transcript levels of most of them decreased upon sucrose feeding like the transcript level...All genes encoding chloroplast antioxidant enzymes are nuclear-encoded and posttranscriptionally targeted to chloroplasts. The transcript levels of most of them decreased upon sucrose feeding like the transcript levels of many genes encoding components of the photosynthetic electron transport chain. However, the transcript abundance of stromal ascorbate peroxidase (s-APX; At4g08390) increased. Due to mild sugar application conditions, the plants kept the phosphorylation status of the ADP+ATP pool and the redox states of the NADPH+NADP~ and the ascorbate pools under control, which excludes them as signals in s-APX regulation. Correlation with ascorbate pool size regulation and comparison of transcript abundance regulation in the starch-biosynthetic mutant adgl, the ascorbate biosynthesis mutant vtcl, and the abscisic acid (ABA) biosynthetic mutant aba2 showed a link between sugar induction of s-APX and ascorbate biosynthesis.展开更多
文摘All genes encoding chloroplast antioxidant enzymes are nuclear-encoded and posttranscriptionally targeted to chloroplasts. The transcript levels of most of them decreased upon sucrose feeding like the transcript levels of many genes encoding components of the photosynthetic electron transport chain. However, the transcript abundance of stromal ascorbate peroxidase (s-APX; At4g08390) increased. Due to mild sugar application conditions, the plants kept the phosphorylation status of the ADP+ATP pool and the redox states of the NADPH+NADP~ and the ascorbate pools under control, which excludes them as signals in s-APX regulation. Correlation with ascorbate pool size regulation and comparison of transcript abundance regulation in the starch-biosynthetic mutant adgl, the ascorbate biosynthesis mutant vtcl, and the abscisic acid (ABA) biosynthetic mutant aba2 showed a link between sugar induction of s-APX and ascorbate biosynthesis.