The regulatory mechanisms of drought and salt-associated miRNAs have not been fully understood in Sorghum bicolor. In this study, we investigated the effect of salinity stress (200 and 300 mM NaCl) and drought stress ...The regulatory mechanisms of drought and salt-associated miRNAs have not been fully understood in Sorghum bicolor. In this study, we investigated the effect of salinity stress (200 and 300 mM NaCl) and drought stress at pre- and post-flowering stages on the expression pattern of small regulatory RNAs in six Sorghum genotypes using semi-quantitative reverse transcriptase PCR (RT-qPCR). The results indicated that both drought and salt stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought and salt stress in a different pattern among the six sorghum genotypes. miR156, miR167, miR168 and miR399 give different expressions levels compared to other studied miRNAs which may attribute to the adaption of sorghum to drought and salt stress and are good candidates for improving sorghum by transgenic technology.展开更多
文摘The regulatory mechanisms of drought and salt-associated miRNAs have not been fully understood in Sorghum bicolor. In this study, we investigated the effect of salinity stress (200 and 300 mM NaCl) and drought stress at pre- and post-flowering stages on the expression pattern of small regulatory RNAs in six Sorghum genotypes using semi-quantitative reverse transcriptase PCR (RT-qPCR). The results indicated that both drought and salt stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought and salt stress in a different pattern among the six sorghum genotypes. miR156, miR167, miR168 and miR399 give different expressions levels compared to other studied miRNAs which may attribute to the adaption of sorghum to drought and salt stress and are good candidates for improving sorghum by transgenic technology.