This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Ger...This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.展开更多
文摘This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.