In this paper, we present the effect of varied illumination levels on the electrical properties of the organic blend bulk heterojuction (BHJ) photodiode. To prepare the BHJ blend, poly(2-methoxy-5(2P-ethylhexyloxy...In this paper, we present the effect of varied illumination levels on the electrical properties of the organic blend bulk heterojuction (BHJ) photodiode. To prepare the BHJ blend, poly(2-methoxy-5(2P-ethylhexyloxy) phenyleneviny- lene (MEH-PPV) and aluminum-tris-(8-hydroxyquinoline) (Alq3) are used as donor and acceptor materials, respectively. In order to fabricate the photodiode, a 40-nm thick film of poly(3, 4-ethylendioxytbiophene):poly(styrensulfonate) (PE- DOT:PSS) is primarily deposited on a cleaned ITO coated glass substrate by spin coating technique. The organic photo- sensitive blend is later spun coated on the PEDOT:PSS layer, followed by the lithium fluoride (LiF) and aluminium (A1) thin films deposition by thermal evaporation. The optical properties of the MEH-PPV:Alq3 blend thin films are investigated using photoluminescence (PL) and UV-Vis spectroscopy. The photodiode shows good photo-current response as a function of variable illumination levels. The responsivity value - 8 mA/W at 3 V is found and the ratio of photo-current to dark current (lph/IDark) is found to be 1.24.展开更多
基金Project supported by the Long Term Research Grant Scheme(LRGS),Ministry of Higher Education,Malaysia(Grant No.LR003/2011A)
文摘In this paper, we present the effect of varied illumination levels on the electrical properties of the organic blend bulk heterojuction (BHJ) photodiode. To prepare the BHJ blend, poly(2-methoxy-5(2P-ethylhexyloxy) phenyleneviny- lene (MEH-PPV) and aluminum-tris-(8-hydroxyquinoline) (Alq3) are used as donor and acceptor materials, respectively. In order to fabricate the photodiode, a 40-nm thick film of poly(3, 4-ethylendioxytbiophene):poly(styrensulfonate) (PE- DOT:PSS) is primarily deposited on a cleaned ITO coated glass substrate by spin coating technique. The organic photo- sensitive blend is later spun coated on the PEDOT:PSS layer, followed by the lithium fluoride (LiF) and aluminium (A1) thin films deposition by thermal evaporation. The optical properties of the MEH-PPV:Alq3 blend thin films are investigated using photoluminescence (PL) and UV-Vis spectroscopy. The photodiode shows good photo-current response as a function of variable illumination levels. The responsivity value - 8 mA/W at 3 V is found and the ratio of photo-current to dark current (lph/IDark) is found to be 1.24.