期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Study of the Effect of Acetic Acid and Phosphate on Copper Corrosion by Immersion Tests
1
作者 Yuna Yamaguchi Kaho Sugiura +4 位作者 Toyohiro Arima Fuka Takahashi itaru ikeda Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 2024年第1期15-23,共9页
It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and co... It was reported that hemispheric corrosion occurred in copper tubes in an acetic acid environment. When hemispheric corrosion occurred, corrosion could easily progress if water then flowed into the copper pipe, and countermeasures were needed. Therefore, we studied the copper corrosion caused by acetic acid. The present work investigated the relationship between the corrosion form of copper and acetic acid concentration using phosphorous-deoxidized copper, and reported that hemispherical corrosion was observed at acetic acid concentrations of 0.01 to 1 vol.% (0.002 to 0.2 mol·L<sup>-1</sup>) in the immersion test. In this study, the effects of acetic acid and phosphate on copper corrosion were examined using oxygen-free copper in immersion tests. The results suggested that different concentrations of phosphate in acetic acid solutions and the presence or absence of acetic acid and phosphate affected the corrosion of copper, resulting in different corrosion forms and corrosion progress. 展开更多
关键词 Acetic Acid PHOSPHATE Oxygen-Free Copper Hemispherical Corrosion Ant-Nest Corrosion
下载PDF
Evaluation of Expansion Process to Improve Corrosion Resistance of Copper Tubes with High Residual Carbon on the Inner Surface
2
作者 Yuma Kano itaru ikeda +3 位作者 Takashi Iyasu Yuna Yamaguchi Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 CAS 2023年第2期45-52,共8页
Residual carbon on the inner surface of copper tubes is known to be a cause of pitting corrosion. We showed previously that the rapid filling test was useful to evaluate the pitting corrosion resistance of copper tube... Residual carbon on the inner surface of copper tubes is known to be a cause of pitting corrosion. We showed previously that the rapid filling test was useful to evaluate the pitting corrosion resistance of copper tubes. Immersion tests using the rapid evaluation test solution showed that corrosion occurs on the entire surface of copper tubes with low residual carbon amounts, while those with high residual carbon amounts show pitting corrosion. Therefore, it is necessary to improve the corrosion resistance of copper tubes with high residual carbon amount, which are expected to undergo pitting corrosion. As pitting corrosion occurs when anodes are locally concentrated on part of the metal surface, it has been suggested that anodes be dispersed over the entire surface by the processing of the metal surface. Metal processing methods have various purposes, including changing the shape and properties of metals, and in this case, leading to desirable surface properties (such as expansion and drawing processes). Here, we focused on the expansion process and its effects on corrosion resistance of copper tubes. The results showed that hydraulic expansion has a significant effect on the inner copper surface by improving corrosion resistance as the anode area increases. 展开更多
关键词 Expansion Process Carbon Film Pitting Corrosion Corrosive Anion the Pitting Corrosion Resistance Test
下载PDF
A Study of Water Treatment Chemical Effects on Type I” Pitting Corrosion of Copper Tubes 被引量:1
3
作者 Takashi Iyasu Motoki Kuratani +3 位作者 itaru ikeda Noriyuki Tanaka Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 2020年第7期494-504,共11页
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua... It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added. 展开更多
关键词 Copper Tube Pitting Corrosion Residual Carbon Cooling Water System Water Treatment
下载PDF
Simple Measurement of Carbon Films on Copper Tubes and Their Effects on Corrosion
4
作者 Takashi Iyasu Motoki Kuratani +3 位作者 itaru ikeda Noriyuki Tanaka Yutaka Yamada Osamu Sakurada 《Open Journal of Composite Materials》 2021年第1期12-22,共11页
It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the res... It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be. 展开更多
关键词 Copper Tube Residual Carbon Pitting Corrosion Cooling Water System Re-frigerator XPS
下载PDF
Relationship between Corrosion Form and Elution Behavior of Copper Tubes Surfaces with Different Residual Carbon Amounts
5
作者 Yuma Kano itaru ikeda +3 位作者 Takashi Iyasu Yuna Yamaguchi Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 CAS 2022年第12期595-602,共8页
It was well known that residual carbon on the inner surface of copper tubes was a cause of pitting corrosion, and copper tube surfaces with different residual carbon amount were different corrosion forms. In this stud... It was well known that residual carbon on the inner surface of copper tubes was a cause of pitting corrosion, and copper tube surfaces with different residual carbon amount were different corrosion forms. In this study, the relation between corrosion form and elution of copper in immersion tests by accelerated corrosion test solutions was examined. Generally, pitting corrosion that occurs in actual machines was reported to observe chloride ion at the bottom of the pitting corrosion of copper tubes. Energy dispersive X-ray (EDX) mapping analysis indicated that chlorine was concentrated in the upper layer of the samples where copper was not detected under conditions of low residual carbon amount, while chlorine was concentrated under part of the micromounds (including the bottom of the pits) under conditions of high residual carbon amount. It was also suggested that the amount of copper eluted was related to the amount of residual carbon. 展开更多
关键词 Carbon Film Residual Carbon Amount Pitting Corrosion Corrosive Anion The Pitting Corrosion Resistance Test
下载PDF
Effect of Pipe Diameter on Electrochemical Behavior of Stainless Steel Type 304 Pipes in Tap Water 被引量:1
6
作者 Noriyuki Tanaka Shigeru Sato +4 位作者 itaru ikeda Tadahiko Uchida Motoki Kuratani Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 2019年第11期697-708,共12页
We investigated the effects of pipe diameter on the corrosion resistance of stainless steel type 304 pipes using electrochemical measurements. Compared to plate steel, pipes have harder physical properties and tend to... We investigated the effects of pipe diameter on the corrosion resistance of stainless steel type 304 pipes using electrochemical measurements. Compared to plate steel, pipes have harder physical properties and tend to be harder and showed greater permeability with decreasing inner diameter. We found that the maximum corrosion current density in the secondary active state, which is the starting point of secondary passivation, appeared in the polarization curve measurement in tap water. Similar to the Vickers hardness and the maximum current density in the secondary active state, the permeability tended to increase as the diameter decreased. This is thought to increase the amount of deformation-induced martensitic and increase corrosion susceptibility. The peak of the secondary active current density was clearly seen as the potential sweep speed was increased. In addition, potential sweep speed dependence was observed in the corrosion susceptibility evaluation of deformation-induced martensite. In comparison with acid treatment, the formation of deformation-induced martensite was considered to occur in the extreme surface layer. The maximum corrosion current density in the secondary active state is expected to be a new susceptibility evaluation method for evaluating the deformation-induced martensitic transformation. 展开更多
关键词 STAINLESS Steel TYPE 304 ELECTROCHEMICAL CONSIDERATION Pipe Diameter ELECTROCHEMICAL Behavior TAP Water
下载PDF
Study of Corrosion on Film Properties of High Strength Cu-Sn-Zr Alloys in Tap Water
7
作者 itaru ikeda Noriyuki Tanaka +2 位作者 Motoki Kuratani Yutaka Yamada Osamu Sakurada 《Materials Sciences and Applications》 2020年第1期70-80,共11页
Corrosion has been reported to occur in the copper tubes of heat ex-changers in multiple-circulation hot water supply systems. We have been investigating the applicability of high-strength Cu-0.65 mass% Sn-0.014 mass%... Corrosion has been reported to occur in the copper tubes of heat ex-changers in multiple-circulation hot water supply systems. We have been investigating the applicability of high-strength Cu-0.65 mass% Sn-0.014 mass% Zr-0.020 mass% P alloy to counteract this corrosion. Immersion tests, electrochemical measurements, and field tests were performed. Excellent corrosion resistance of the alloy was established under conditions with flowing water due to the formation of composite films containing tin. The alloy is expected to be better than copper as a corrosion-resistant material for heat exchanger tubes. 展开更多
关键词 Cu-Sn-Zr Alloy CORROSION Resistance Heat EXCHANGER HOT Water Supply System Flow CONDITION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部