期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Flow Routing in the Natural Channel of the Ichu River Experimental Basin through Artificial Neural Networks
1
作者 iván ayala bizarro Joel Oré Iwanaga +3 位作者 David Requena Machuca Richard Oré Cayetano Edwin Torres Condori Edwin Montes Raymundo 《Journal of Environmental Science and Engineering(A)》 2018年第10期387-403,共17页
The objective of the investigation is to carry out the flow routing in the natural channel of the experimental basin of the Ichu river, by means of the Artificial Intelligence technique of ANNs (Artificial Neural Netw... The objective of the investigation is to carry out the flow routing in the natural channel of the experimental basin of the Ichu river, by means of the Artificial Intelligence technique of ANNs (Artificial Neural Networks). Generally, hydrological and hydraulic methods require different parameters of the river channel, while the ANNs method simplifies the amount of data. The study area is located in the experimental basin of the Ichu river, upstream of the city of Huancavelica in an area of 607 km^2. A calibrated and validated model of the rain-runoff process was developed, with data recorded in 6 automatic meteorological stations (rainfall) and one hydrological station (runoff). The model HEC-1 was used to model the rain-runoff process and the Muskingun-Cunge method for the flood rounting, generating historical records for 5 stretches of the Ichu riverbed and obtaining 39 maximum historical records in the 2016 periods and 2017. The model obtained values of Nash-Sutcliffe efficiency coefficients (E) equal to 0.851 and 0.828 for the calibration and validation stage, respectively. The ANNs were built with different architectures to train and obtain the architecture that best fits the historical phenomena. Finally, the architecture 1-5-1 presented a better fit, whose statistical E was values of 0.881 and 0.859 in the training and validation stage respectively. 展开更多
关键词 Rain-runoff process FLOOD ROUTING ANNS
下载PDF
Prediction of Drought with Artificial Neural Networks and Genetic Algorithms Using Precipitation by Remote Perception 被引量:1
2
作者 iván ayala bizarro Miguel Zubiaur Alejos Jessica Zuniga Mendoza 《Journal of Environmental Science and Engineering(B)》 2018年第7期253-265,共13页
The aim of the study is to determine the performance of the regional agricultural drought prediction by the model of ANN(Artificial Neural Networks)type NARX,using the SPI(Standardized Precipitation Index),SPEI(Precip... The aim of the study is to determine the performance of the regional agricultural drought prediction by the model of ANN(Artificial Neural Networks)type NARX,using the SPI(Standardized Precipitation Index),SPEI(Precipitation Index Standardized Evapotranspiration),VCI(Vegetation Condition Index)and GCI(Global Climate Indexes).There have been determined 10 homogeneous regions through RAF(regional frequency analysis)and L-moments,defining the most arid region and the index representing their respective time scale(SPEI 6 months)which responds to the growth and development of vegetation in the basin correlation Pearson equal to 0.58.Monthly rainfall and temperatures correspond to PISCO data prepared by SENAMHI-Peru,with space resolution of 0.05 degrees.For prediction,they have determined two groups,the first to build the model with 80% of the registration and validation of the model and the hypothesis with the remaining 20%.The results have been satisfactory prediction accepting the null hypothesis. 展开更多
关键词 DROUGHT ANN SPI-SPEI-VCI RAF L-MOMENTS
下载PDF
Determination of the Real Dotation and Forecast of the Potable Water System in the Huancavelica City, Peru
3
作者 iván ayala bizarro ivette Contreras Espinoza +5 位作者 Cristel Aguirre Vera Marco López Barrantes Jorge Ortega Vargas Abdon Olivera Quintanilla Hugo Lujan Jeri Eleuterio Alcántara Espinoza 《Journal of Environmental Science and Engineering(A)》 2019年第6期241-248,共8页
The research entitled,“Determination of the Real Dotation and Forecast of the Potable Water System in the Huancavelica city-Peru”,has as objective to determine and analyze the actual endowment and prognosis of the d... The research entitled,“Determination of the Real Dotation and Forecast of the Potable Water System in the Huancavelica city-Peru”,has as objective to determine and analyze the actual endowment and prognosis of the drinking water system in the city of Huancavelica.The city of Huancavelica has a population of approximately 50,000.00 inhabitants and 10,680.00 users of drinking water and sewerage according to the source Companies Providing This Service,the same one that is located in the western chain and central saw range of Perúand belongs to a cold climate.The sample was extracted through Companies Providing This Service EMAPA Huancavelica SA(Anonymous Society),which corresponds to 1,296 data from the consumption of water in cubic meters of each dwelling located in the various categories of each sector.The results obtained from the research indicate that the category that consumed more water during the period 2004-2018 was the domestic category,the same one that had an average of 1,152,123 cubic meters,this is due to the population growth of each year.On the other side,the category that consumed the least water was the social category,the average consumption of which was 11,903.47 cubic meters.In addition,the greatest variability in water consumption is in the state category,the total variation being equal to 21.6%.In the Huancavelica city,water consumption has a growing trend and to predict the volume of drinking water consumption by 2030,water consumption was transformed by first differences,using the ARIMA(Autoregressive Integrated Moving Average)model for total consumption model(0-1-1)(2-0-0)-12 and for the domestic consumption the ARIMA model(0-1-2)(0-0-2)-12.On the other hand,water consumption was analyzed on a monthly basis in which there is greater variability for the months June-6 and December-12.It was taken into account for the calculation of the endowment the domestic consumption,having values ranging from 6.45 L/inhab/day until 1,460 L/inhab/day,which reflects a considerable variation to consider.The average value in the spring station is 109.44 L/inhab/day,in the summer station it is 116.93 L/inhab/day,in the autumn station it is 117.17 L/inhab/day and in the winter station it is 108.48 L/inhab/day.Also,the average minimum endowment equal to 7.66 L/inhab/day was obtained,the average maximum endowment is of 569.03 L/inhab/day and the actual endowment 113.01 L/inhab/day.Finally,it is concluded that the estimated average actual endowment for the Huancavelica city,that is to say,113.01 L/inhab/day,is much less than that indicated in the Norma OS.100 of the Basic Considerations of Sanitary Infrastructure Design of the RNE(Reglamento Nacional de Edificaciones),the same one that mentions the endowment equal to 180 L/inhab/day for cold climates,which means a reduction of costs in the dimensioning of hydraulic structures and sanitation and drinking water works. 展开更多
关键词 Drinking water real consumption critical demand forecasting drinking water
下载PDF
Performance between the Hydraulic Gradient Method and the Perturbation Method for the Analysis of Water Supply Networks
4
作者 iván ayala bizarro Elviz Quispe García +5 位作者 Marco Lopez Barrantes Freddy Marrero Saucedo Omar CaballeroSanchez Hugo Lujan Jeri Carlos Gaspar Paco Jorge Ortega Vargas 《Journal of Environmental Science and Engineering(A)》 2020年第6期217-226,共10页
The HGM(Hydraulic Gradient Method),it is used in most of the current commercial software,such as EPANET,WaterCAD,MikeNet,among others,the same that corresponds to an iterative method that depends on initial estimated ... The HGM(Hydraulic Gradient Method),it is used in most of the current commercial software,such as EPANET,WaterCAD,MikeNet,among others,the same that corresponds to an iterative method that depends on initial estimated parameters and programming structures that ensure convergence to obtain results with the highest precision,in addition to this the method makes use of non-linear equation systems.Likewise,the execution time for large extensions of water distribution networks is considerably high.On the other hand,the PM(Perturbation Method),is a new direct solution method,which makes use of principles of quantum mechanics to transform nonlinear equations into simpler linear systems.Obtaining a simple and robust optimization method that only requires simple and direct mathematical processes.Using the MathCad and Python programming languages as a verification tool,multiple tests were carried out,the results for the hydraulic parameters showing that the flow rates and pressures obtained by the HGM and the PM are extremely similar,in the same way the execution time(time run)have been 77.09%favorable to the PM.In other words,the PM presents efficiency to estimate the hydraulic characteristics such as the pressures at the nodes and the velocities in the pipes of the drinking water distribution networks. 展开更多
关键词 Perturbation method quantum mechanics hydraulic gradient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部