Recent advancements in wavefront shaping techniques have facilitated the study of complex structured light’s propagation with orbital angular momentum(OAM)within various media.The introduction of spiral phase modulat...Recent advancements in wavefront shaping techniques have facilitated the study of complex structured light’s propagation with orbital angular momentum(OAM)within various media.The introduction of spiral phase modulation to the Laguerre–Gaussian(LG)beam during its paraxial propagation is facilitated by the negative gradient of the medium’s refractive index change over time,leading to a notable increase in the rate of phase twist,effectively observed as phase retardation of the OAM.This approach attains remarkable sensitivity to even the slightest variations in the medium’s refractive index(∼10−6).The phase memory of OAM is revealed as the ability of twisted light to preserve the initial helical phase even propagating through the turbid tissue-like multiple scattering medium.The results confirm fascinating opportunities for exploiting OAM light in biomedical applications,e.g.such as non-invasive trans-cutaneous glucose diagnosis and optical communication through biological tissues and other optically dense media.展开更多
基金from COST Action CA21159-understanding interaction light-biological surfaces:the possibility fornew electronic materials and devices(PhoBioS)supported by COST(European Cooperation in Science and Technology)+1 种基金the support from the Leverhulme Trust and The RoyalSociety(ref.no.:APX111232 APEX awards 2021)UKKi UK-Israel innovationresearcher mobility,and Academy of Finland(grant projects 325097 and351068).
文摘Recent advancements in wavefront shaping techniques have facilitated the study of complex structured light’s propagation with orbital angular momentum(OAM)within various media.The introduction of spiral phase modulation to the Laguerre–Gaussian(LG)beam during its paraxial propagation is facilitated by the negative gradient of the medium’s refractive index change over time,leading to a notable increase in the rate of phase twist,effectively observed as phase retardation of the OAM.This approach attains remarkable sensitivity to even the slightest variations in the medium’s refractive index(∼10−6).The phase memory of OAM is revealed as the ability of twisted light to preserve the initial helical phase even propagating through the turbid tissue-like multiple scattering medium.The results confirm fascinating opportunities for exploiting OAM light in biomedical applications,e.g.such as non-invasive trans-cutaneous glucose diagnosis and optical communication through biological tissues and other optically dense media.