Human BCL10 (hBCL10) protein is a signal transduction molecule originally identified because of its direct involvement in a subset of mucosa-associated lymphoid tissue (MALT) lymphomas, and later recognized as a cruci...Human BCL10 (hBCL10) protein is a signal transduction molecule originally identified because of its direct involvement in a subset of mucosa-associated lymphoid tissue (MALT) lymphomas, and later recognized as a crucial factor in regulating activation of NF-kB transcription factor following antigen receptor stimulation on lymphocytes. In this study, we characterized the NF-kB inducing activity of porcine BCL10 (pBCL10). pBCL10 oligimerizes, binds to components of the CARMA/ BCL10/MALT1 complex and forms cytoplasmic filaments. Functionally, in human cells pBCL10 is more effective in activating NF-kB compared to hBCL10, possibly due to the lack of carboxy-terminal inhibitory serine residues present in the human protein. Also, depletion experiments carried out through expression of short hairpin RNAs targeting hBCL10 indicate that pBcl10 can functionally replace the human protein and retains its higher NF-kB-inducing property in the absence of hBCL10. Our results contribute useful information on BCL10 protein in pigs, and may help the development of strategies based on the control of the immune response in pigs.展开更多
文摘Human BCL10 (hBCL10) protein is a signal transduction molecule originally identified because of its direct involvement in a subset of mucosa-associated lymphoid tissue (MALT) lymphomas, and later recognized as a crucial factor in regulating activation of NF-kB transcription factor following antigen receptor stimulation on lymphocytes. In this study, we characterized the NF-kB inducing activity of porcine BCL10 (pBCL10). pBCL10 oligimerizes, binds to components of the CARMA/ BCL10/MALT1 complex and forms cytoplasmic filaments. Functionally, in human cells pBCL10 is more effective in activating NF-kB compared to hBCL10, possibly due to the lack of carboxy-terminal inhibitory serine residues present in the human protein. Also, depletion experiments carried out through expression of short hairpin RNAs targeting hBCL10 indicate that pBcl10 can functionally replace the human protein and retains its higher NF-kB-inducing property in the absence of hBCL10. Our results contribute useful information on BCL10 protein in pigs, and may help the development of strategies based on the control of the immune response in pigs.