This paper provides a solution for the design optimization of two-dimensional impedance structures for a given elec-tromagnetic field distribution. These structures must provide electromagnetic compatibility between a...This paper provides a solution for the design optimization of two-dimensional impedance structures for a given elec-tromagnetic field distribution. These structures must provide electromagnetic compatibility between antennas located on a plane. The optimization problem is solved for a given attenuation of the complete field. Since the design optimiza-tion gives a complex law of impedance distribution with a large real part, we employ the method of pointwise synthesis for the optimization of the structure. We also consider the design optimization case where the structure has zero im-pedance on its leading and trailing edges. The method of moments is used to solve the integral equations and the nu-merical solution is presented. The calculated impedance distribution provides the required level of antenna decoupling. The designs are based on the concept of soft and hard surfaces in electromagnetics.展开更多
文摘This paper provides a solution for the design optimization of two-dimensional impedance structures for a given elec-tromagnetic field distribution. These structures must provide electromagnetic compatibility between antennas located on a plane. The optimization problem is solved for a given attenuation of the complete field. Since the design optimiza-tion gives a complex law of impedance distribution with a large real part, we employ the method of pointwise synthesis for the optimization of the structure. We also consider the design optimization case where the structure has zero im-pedance on its leading and trailing edges. The method of moments is used to solve the integral equations and the nu-merical solution is presented. The calculated impedance distribution provides the required level of antenna decoupling. The designs are based on the concept of soft and hard surfaces in electromagnetics.