Evaluation of multiorgan protection strategies against ischemic injury in humans is essential to improve quality of life and reduce mortality. Over the past 40 years a host of pharmacologic and non-pharmacologic inter...Evaluation of multiorgan protection strategies against ischemic injury in humans is essential to improve quality of life and reduce mortality. Over the past 40 years a host of pharmacologic and non-pharmacologic interventions have been evaluated with the aim of limiting cell damage produced by ischemia-reperfusion injury. Different conditioning strategies, such as remote conditioning, are documented to mitigate ischemic injury in animal and human studies and may have remarkable clinical promise. However, successful clinical application of these interventions remains questionable since protection is known to be compromised in humans with comorbidities either with or without medications. Regardless, ongoing studies continue to examine the underlying mechanisms involved in this endogenous cytoprotective phenomenon to further its successful implementation in the clinical setting. In this review, we examine recent findings in support of remote conditioning stratagems for organ protection and their relevance for translation to clinical use.展开更多
Patients with myocardial infarction resulting from acute coronary syndrome are classified by electrocardiographic presentation: 1-acute ST-segment elevation myocardial infarction (STEMI) or 2-non-ST-segment elevation ...Patients with myocardial infarction resulting from acute coronary syndrome are classified by electrocardiographic presentation: 1-acute ST-segment elevation myocardial infarction (STEMI) or 2-non-ST-segment elevation myocardial infarction (NSTEMI). Prompt reperfusion of an infarct-related artery by percutaneous coronary interventions provides some relief of symptoms;long-term prognosis appears to be worse in STEMI compared to NSTEMI patients but clinical findings remain controversial. Reduced myocardial perfusion to the infarct area, caused in part by microvascular obstruction, is a privileged target for diverse pharmacologic or non-pharmacologic interventions (or combinations thereof) to improve clinical outcomes. To date, benefits of both pharmacologic and non-pharmacologic strategies to either limit microvascular obstruction and myocardial injury or improve myocardial perfusion are inconsistent. This review focuses on the physiopathological aspects of myocardial infarction in relation to development of STEMI/NSTEMI and on potential cardioprotective strategies.展开更多
文摘Evaluation of multiorgan protection strategies against ischemic injury in humans is essential to improve quality of life and reduce mortality. Over the past 40 years a host of pharmacologic and non-pharmacologic interventions have been evaluated with the aim of limiting cell damage produced by ischemia-reperfusion injury. Different conditioning strategies, such as remote conditioning, are documented to mitigate ischemic injury in animal and human studies and may have remarkable clinical promise. However, successful clinical application of these interventions remains questionable since protection is known to be compromised in humans with comorbidities either with or without medications. Regardless, ongoing studies continue to examine the underlying mechanisms involved in this endogenous cytoprotective phenomenon to further its successful implementation in the clinical setting. In this review, we examine recent findings in support of remote conditioning stratagems for organ protection and their relevance for translation to clinical use.
文摘Patients with myocardial infarction resulting from acute coronary syndrome are classified by electrocardiographic presentation: 1-acute ST-segment elevation myocardial infarction (STEMI) or 2-non-ST-segment elevation myocardial infarction (NSTEMI). Prompt reperfusion of an infarct-related artery by percutaneous coronary interventions provides some relief of symptoms;long-term prognosis appears to be worse in STEMI compared to NSTEMI patients but clinical findings remain controversial. Reduced myocardial perfusion to the infarct area, caused in part by microvascular obstruction, is a privileged target for diverse pharmacologic or non-pharmacologic interventions (or combinations thereof) to improve clinical outcomes. To date, benefits of both pharmacologic and non-pharmacologic strategies to either limit microvascular obstruction and myocardial injury or improve myocardial perfusion are inconsistent. This review focuses on the physiopathological aspects of myocardial infarction in relation to development of STEMI/NSTEMI and on potential cardioprotective strategies.