It is well renowned that trees have capacity to reduce the air pollution. It is mandatory to expand tree plantation in industrial area to minimize the threat of pollutants. For green belt development, it is necessary ...It is well renowned that trees have capacity to reduce the air pollution. It is mandatory to expand tree plantation in industrial area to minimize the threat of pollutants. For green belt development, it is necessary to use plants that are tolerant to air pollution. The present study includes Air pollution tolerance index (APTI) of selected plant species with the help of biochemical analysis. On the basis of APTI and some other socioeconomic and biological parameters of plants, Anticipated Performance Index (API) was calculated. Out of twelve species, Ficus benghalensis showed to be the most efficient among others. As per classification of API, Ficus religiosa tree species is classified into the moderate category. Based on the APTI and API, appropriate plant species for green belt development in industrial area were identified and recommended for mitigating the pollution.展开更多
The Litter nutrient concentrations of N, P, Ca, Mg, K and Na in mature leaves, twigs and reproductive parts and their relationship between senescent and young leaves were investigated in five forest species: Acacia n...The Litter nutrient concentrations of N, P, Ca, Mg, K and Na in mature leaves, twigs and reproductive parts and their relationship between senescent and young leaves were investigated in five forest species: Acacia nilotica, Acacia leucophloea. Tectona grandis, Miliusa tomentosa and Butea monosperma in Indian tropical dry deciduous forest in Western India.. Total dry matter of plant species was recorded and analyzed for N, P, Ca, Mg, K and Na. A. nilotica had the highest concentrations of N in leaf, while ,4. leucophloea had the highest concentrations of Ca and Mg in leaf. The highest concentrations of P in leaf were found in A. nilotica, A. leucophloea and B. monosperma where as lowest in T. grandis and M. tomentosa. No significant differences in K and Na were registered among the species. A marked seasonal variability was ob- served in the concentrations of N, P and K, except for Ca and Mg. Potas- sium is the single element that undergoes leaching and mobilization in all species. Resorped N and P can be used for the production of fresh leaf in the following annual cycle. Nutrient resorption and retranslocation from senescent leaves and litter supports the production of new foliage and increase the fertility of soil.展开更多
文摘It is well renowned that trees have capacity to reduce the air pollution. It is mandatory to expand tree plantation in industrial area to minimize the threat of pollutants. For green belt development, it is necessary to use plants that are tolerant to air pollution. The present study includes Air pollution tolerance index (APTI) of selected plant species with the help of biochemical analysis. On the basis of APTI and some other socioeconomic and biological parameters of plants, Anticipated Performance Index (API) was calculated. Out of twelve species, Ficus benghalensis showed to be the most efficient among others. As per classification of API, Ficus religiosa tree species is classified into the moderate category. Based on the APTI and API, appropriate plant species for green belt development in industrial area were identified and recommended for mitigating the pollution.
基金Foundationfor Ecological Security,Anand,Gujarat for financial assistance of this research project
文摘The Litter nutrient concentrations of N, P, Ca, Mg, K and Na in mature leaves, twigs and reproductive parts and their relationship between senescent and young leaves were investigated in five forest species: Acacia nilotica, Acacia leucophloea. Tectona grandis, Miliusa tomentosa and Butea monosperma in Indian tropical dry deciduous forest in Western India.. Total dry matter of plant species was recorded and analyzed for N, P, Ca, Mg, K and Na. A. nilotica had the highest concentrations of N in leaf, while ,4. leucophloea had the highest concentrations of Ca and Mg in leaf. The highest concentrations of P in leaf were found in A. nilotica, A. leucophloea and B. monosperma where as lowest in T. grandis and M. tomentosa. No significant differences in K and Na were registered among the species. A marked seasonal variability was ob- served in the concentrations of N, P and K, except for Ca and Mg. Potas- sium is the single element that undergoes leaching and mobilization in all species. Resorped N and P can be used for the production of fresh leaf in the following annual cycle. Nutrient resorption and retranslocation from senescent leaves and litter supports the production of new foliage and increase the fertility of soil.