Barium doped hafnium oxide nanoparticles were synthesized by an easy co-precipitation method. FTIR analysis and EDX investigation shows the purity and stoichiometric composition of hafnium oxide nanoparticles. XRD inv...Barium doped hafnium oxide nanoparticles were synthesized by an easy co-precipitation method. FTIR analysis and EDX investigation shows the purity and stoichiometric composition of hafnium oxide nanoparticles. XRD investigation exhibit the as syn-thesized nanoparticles are amorphous in nature and calcined barium doped hafnium oxide nanoparticles have the monoclinic phase structure with the mean crystallite size was around 15 nm. TEM analysis shows the development of crystalline Nano-rods. The Na-no-rod formations signify the possibility of its use in applications of sensor. Ultra violet visible spectroscopy investigation shows that the band gap of the nanoparticles is noticed between 5.4-5.14 eV. The visible and NIR of barium doped hafiniura oxide nanoparticles indicated high reflectance, which may possibly be employ as an antireflection coating in solar cells applications and high absorbance ultra violet region signify the viability of make use of the prepared nanoparticles could be used in Opto-electronic device applica-tions.展开更多
文摘Barium doped hafnium oxide nanoparticles were synthesized by an easy co-precipitation method. FTIR analysis and EDX investigation shows the purity and stoichiometric composition of hafnium oxide nanoparticles. XRD investigation exhibit the as syn-thesized nanoparticles are amorphous in nature and calcined barium doped hafnium oxide nanoparticles have the monoclinic phase structure with the mean crystallite size was around 15 nm. TEM analysis shows the development of crystalline Nano-rods. The Na-no-rod formations signify the possibility of its use in applications of sensor. Ultra violet visible spectroscopy investigation shows that the band gap of the nanoparticles is noticed between 5.4-5.14 eV. The visible and NIR of barium doped hafiniura oxide nanoparticles indicated high reflectance, which may possibly be employ as an antireflection coating in solar cells applications and high absorbance ultra violet region signify the viability of make use of the prepared nanoparticles could be used in Opto-electronic device applica-tions.