期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Model Estimates of Nutrient Uptake by Red Spruce Respond to Soil Temperature
1
作者 j. michael kelly Frank C. Thornton j. Devereux joslin 《Journal of Environmental Protection》 2011年第6期769-777,共9页
A better understanding of the mechanisms that control nutrient acquisition in the context of plant and ecosystem responses to climate change is needed. Mechanistic nutrient uptake models provide a means to investigate... A better understanding of the mechanisms that control nutrient acquisition in the context of plant and ecosystem responses to climate change is needed. Mechanistic nutrient uptake models provide a means to investigate some of the impacts of temperature change on soil nutrient supply and root uptake kinetics through the simulation of key soil and plant processes. The NST 3.0 model, in combination with literature values on plant and soil parameters from a red spruce (Picea rubens L.) site in the southern Appalachians, was used to conduct a series of model simulations focused on the combined effects of changes to the maximal rate of nutrient influx at high concentrations (Imax), root growth rate (k), concentration of nutrient occurring in the soil solution (Cli), and the ability of the soil solid phase to buffer changes to the soil solution nutrient concentration (b). Previous research has indicated that these four parameters are responsive to changes in root zone temperature. Simulated uptake of NH4 increased by a factor of up to 2.6 in response to increases in soil temperature of 1°C to 5°C. The model also projected an increase in P uptake coupled with up to an 80% reduction in solution P concentration in response to a 1°C -5°C increase over a 147-d simulation period. These hypothetical changes, if validated, have interesting implications for plant growth and competition and point to a need for additional studies to better define the impacts of soil temperature on soil nutrient supply and root uptake. 展开更多
关键词 MECHANISTIC Modeling IMAX ROOT Growth Rate Soil BUFFER Power
下载PDF
GPS- vs. DEM-Derived Elevation Estimates from a Hardwood Dominated Forest Watershed
2
作者 L. Chris Kiser j. michael kelly 《Journal of Geographic Information System》 2010年第3期147-151,共5页
Topographic attributes are often used as explanatory variables when providing spatial estimates of various environmental attribute response variables. Elevation of sampling locations can be derived from global positio... Topographic attributes are often used as explanatory variables when providing spatial estimates of various environmental attribute response variables. Elevation of sampling locations can be derived from global positioning systems (GPS) or digital elevation models (DEM). Given the potential for differences in elevation among these two data sources, especially in response to forest canopy cover, our objective was to compare GPS and DEM-derived elevation values during the dormant season. A non-parametric Wilcoxon test indicated GPS elevation was higher than DEM elevation with a mean difference of 6 m. Linear regression analysis indicated that GPS and DEM elevation were well correlated (R2 = 0.71, r = 0.84, p 【0.0001). Although elevation among the two data sources differed, the strong linear relationship allows for correction of elevation values in a predictable manner. 展开更多
关键词 FOREST CANOPY COVER Linear Regression Spatial ESTIMATES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部