期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS
1
作者 C. Brennecke A. Linke +1 位作者 C. Merdon j. schoberl 《Journal of Computational Mathematics》 SCIE CSCD 2015年第2期191-208,共18页
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, ... Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case. 展开更多
关键词 Variational crime Crouzeix-Raviart finite element Divergence-free mixed me-thod Incompressible Navier-Stokes equations A priori error estimates.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部