期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder 被引量:2
1
作者 A.AHMED M.KHAN j.ahmed 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1417-1430,共14页
In this paper,the mechanism of thermal energy transport in swirling flow of the Maxwell nanofluid induced by a stretchable rotating cylinder is studied.The rotation of the cylinder is kept constant in order to avoid t... In this paper,the mechanism of thermal energy transport in swirling flow of the Maxwell nanofluid induced by a stretchable rotating cylinder is studied.The rotation of the cylinder is kept constant in order to avoid the induced axially secondary flow.Further,the novel features of heat generation/absorption,thermal radiation,and Joule heating are studied to control the rate of heat transfer.The effects of Brownian and thermophoretic forces exerted by the Maxwell nanofluid to the transport of thermal energy are investigated by utilizing an effective model for the nanofluid proposed by Buongiorno.The whole physical problem of fluid flow and thermal energy transport is modelled in the form of partial differential equations(PDEs)and transformed into nonlinear ordinary differential equations(ODEs)with the help of the suitable flow ansatz.Numerically acquired results through the technique bvp4c are reported graphically with physical explanation.Graphical analysis reveals that there is higher transport of heat energy in the Maxwell nanoliquid for a constant wall temperature(CWT)as compared with the prescribed surface temperature(PST).Both thermophoretic and Brownian forces enhance the thermal energy transport in the flowing Maxwell nanofluid.Moreover,the temperature distribution increases with increasing values of the radiation parameter and the Eckert number.It is also noted that an increase in Reynolds number reduces the penetration depth,and as a result the flow and transport of energy occur only near the surface of the cylinder. 展开更多
关键词 Maxwell nanofluid rotating cylinder heat source/sink Joule heating convective condition numerical solution
下载PDF
Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory 被引量:2
2
作者 A.HAFEEZ M.KHAN +1 位作者 A.AHMED j.ahmed 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1083-1094,共12页
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal condu... A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution. 展开更多
关键词 Oldroyd-B nanofluid rotating disk magnetohydrodynamic(MHD) Cattaneo-Christov theory analytical solution
下载PDF
Chemically reactive and radiative von Kármán swirling flow due to a rotating disk 被引量:2
3
作者 M.KHAN j.ahmed L.AHMAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第9期1295-1310,共16页
A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temp... A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic(MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order(RKF45)integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction. 展开更多
关键词 rotating stretchable disk magnetic field nonlinear radiative heat flux homogeneous-heterogeneous chemical reaction
下载PDF
Non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid over a cylindrical disk 被引量:1
4
作者 M.KHAN M.SARFRAZ +2 位作者 j.ahmed L.AHMAD C.FETECAU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期725-740,共16页
The study of non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid along with magnetohydrodynamic(MHD) and non-linear Rosseland thermal radiation over a cylindrical disk in the existence of the time-i... The study of non-axisymmetric Homann stagnation-point flow of Walter’s B nanofluid along with magnetohydrodynamic(MHD) and non-linear Rosseland thermal radiation over a cylindrical disk in the existence of the time-independent free stream is considered. Moreover, the notable impacts of thermophoresis and Brownian motion are analyzed by Buongiorno’s model. The momentum, energy, and concentration equations are converted into the dimensionless coupled ordinary differential equations via similarity transformations, which are later numerically solved by altering the values of the pertinent parameters. The numerical and asymptotic solutions for the large shear-to-strain rate ratio γ =a/bfor the parameters of the displacement thicknesses and the wall-shear stress are computed by perturbative expansion and analyzed. Furthermore, the technique bvp4c in MATLAB is deployed as an efficient method to analyze the calculations for the non-dimensional velocities, temperature, displacement thickness, and concentration profiles. It is observed that the two-dimensional displacement thickness parameters α andβ are reduced due to the viscoelasticity and magnetic field effects. Moreover, when the shear-to-strain rate ratio approaches infinity, α is closer to its asymptotic value, while βand the three-dimensional displacement thickness parameter δ1 show the opposite trend.The outcomes of the viscoelasticity and the magnetic field on the skin friction are also determined. It is concluded that ■ reaches its asymptotic behavior when the shearto-strain rate ratio approaches infinity. Meanwhile, ■ shows different results. 展开更多
关键词 Walter’s B fluid cylindrical disk NANOFLUID magnetic field non-linear thermal radiation stagnation-point flow
下载PDF
Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact 被引量:1
5
作者 M.KHAN j.ahmed +1 位作者 F.SULTANA M.SARFRAZ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1125-1138,共14页
The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the visc... The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase. 展开更多
关键词 cylindrical disk hybrid nanofluid magnetic field non-linear thermal radiation stagnation point flow viscous dissipation
下载PDF
Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model 被引量:1
6
作者 A.AHMED M.KHAN +1 位作者 j.ahmed A.HAFEEZ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1195-1208,共14页
This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and ... This research paper analyzes the transport of thermal and solutal energy in the Maxwell nanofluid flow induced above the disk which is rotating with a constant angular velocity.The significant features of thermal and solutal relaxation times of fluids are studied with a Cattaneo-Christov double diffusion theory rather than the classical Fourier’s and Fick’s laws.A novel idea of a Buongiorno nanofluid model together with the Cattaneo-Christov theory is introduced for the first time for the Maxwell fluid flow over a rotating disk.Additionally,the thermal and solutal distributions are controlled with the impacts of heat source and chemical reaction.The classical von Karman similarities are used to acquire the non-linear system of ordinary differential equations(ODEs).The analytical series solution to the governing ODEs is obtained with the well-known homotopy analysis method(HAM).The validation of results is provided with the published results by the comparison tables.The graphically presented outcomes for the physical problem reveal that the higher values of the stretching strength parameter enhance the radial velocity and decline the circumferential velocity.The increasing trend is noted for the axial velocity profile in the downward direction with the higher values of the stretching strength parameter.The higher values of the relaxation time parameters in the Cattaneo-Christov theory decrease the thermal and solutal energy transport in the flow of Maxwell nanoliquids.The higher rate of the heat transport is observed in the case of a larger thermophoretic force. 展开更多
关键词 Maxwell fluid NANOPARTICLE Cattaneo-Christov theory rotating disk homotopy analysis method(HAM)
下载PDF
Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo-Christov theory
7
作者 M.KHAN A.AHMED j.ahmed 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期655-666,共12页
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties.The Maxwe... The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties.The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy.The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws,respectively.Additionally,the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid.The governing partial differential equations(PDEs)for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation.Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations(ODEs).The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution.The results for the time relaxation parameter in the flow,thermal energy,and mass transport equations are discussed graphically.It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid.Further,larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid.Moreover,the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field.The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient. 展开更多
关键词 transient flow Cattaneo-Christov THEORY MAXWELL NANOFLUID Buongiorno MODEL HOMOTOPY analysis method (HAM) solution
下载PDF
Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: modeling and simulation
8
作者 M.KHAN A.AHMED j.ahmed 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期667-680,共14页
This paper investigates the boundary layer flow of the Maxwell fluid around a stretchable horizontal rotating cylinder under the influence of a transverse magnetic field.The constitutive flow equations for the current... This paper investigates the boundary layer flow of the Maxwell fluid around a stretchable horizontal rotating cylinder under the influence of a transverse magnetic field.The constitutive flow equations for the current physical problem are modeled and analyzed for the first time in the literature.The torsional motion of the cylinder is considered with the constant azimuthal velocity E.The partial differential equations(PDEs)governing the torsional motion of the Maxwell fluid together with energy transport are simplified with the boundary layer concept.The current analysis is valid only for a certain range of the positive Reynolds numbers.However,for very large Reynolds numbers,the flow becomes turbulent.Thus,the governing similarity equations are simplified through suitable transformations for the analysis of the large Reynolds numbers.The numerical simulations for the flow,heat,and mass transport phenomena are carried out in view of the bvp4c scheme in MATLAB.The outcomes reveal that the velocity decays exponentially faster and reduces for higher values of the Reynolds numbers and the flow penetrates shallower into the free stream fluid.It is also noted that the phenomenon of stress relaxation,described by the Deborah number,causes to decline the flow fields and enhance the thermal and solutal energy transport during the fluid motion.The penetration depth decreases for the transport of heat and mass in the fluid with the higher Reynolds numbers.An excellent validation of the numerical results is assured through tabular data with the existing literature. 展开更多
关键词 torsional MOTION MAXWELL FLUID magnetic field STRETCHABLE ROTATING CYLINDER bvp4c scheme
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部