期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Carbon dioxide exchange and biomass productivity of the herbaceous layer of a managed tropical humid savanna ecosystem in western Kenya
1
作者 G.O.K’Otuto D.O.Otieno +2 位作者 B.Seo H.O.Ogindo j.c.onyango 《Journal of Plant Ecology》 SCIE 2013年第4期286-297,共12页
Aims Humid savannas,as a result of high precipitation amounts,are highly productive.they are also hotspots for land use change and potential sources of carbon dioxide(CO_(2))due to the large soil carbon(C)stocks.under... Aims Humid savannas,as a result of high precipitation amounts,are highly productive.they are also hotspots for land use change and potential sources of carbon dioxide(CO_(2))due to the large soil carbon(C)stocks.understanding how ecosystem CO_(2) exchange is influenced by changes arising from agricultural land use is vital in future management of these ecosystems and in responding to the ongoing shifts in manage-ment and climate.the aim of this study was to identify how ecosystem CO_(2) exchange and biomass productivity of the herbaceous layer of a humid savanna in Kenya respond to current management practices.Methods We used flux chambers to quantify CO_(2) fluxes,while monthly harvests were undertaken to determine biomass development of the herba-ceous layer of three sites that were(i)fenced to exclude livestock graz-ing,(ii)subjected to grazing by livestock and(iii)abandoned after being cultivated for maize production and also open to grazing by livestock.Important findingsthe peak aboveground biomass ranged between 380 and 1449 g m−2 and biomass production was significantly(P<0.05)lower in the grazed and abandoned plots.the maximum gross primary production(gPP)and net ecosystem CO_(2) exchange(NEE)ranged between 21.8±1.3 to 32.5±2.7 and−9.6±0.7 to−17.9±4.8μmol m−2 s−1,respectively.seasonal NEE fluctuations ranged between 10 and 21μmol m−2s−1,while spatial(among sites)differences ranged between 2 and 10μmol m−2 s−1.Ecosystem respiration(Reco)fluc-tuated between 5 and 10μmol m−2 s−1 during the growing sea-son.Reco was,however,not significantly different among the sites.unlike in other similar ecosystems where ecosystem respiration is determined by the ambient temperature,we did not find any rela-tionship between Reco and temperature in this savanna.Instead,soil moisture accounted for 38-88%of the spatial and seasonal fluc-tuations in ecosystem CO_(2) fluxes and aboveground biomass pro-duction.management influenced the maximum gPP and NEE rates through modification of soil moisture,plant species composition and aboveground biomass.We concluded that soil moisture is the key determinant of ecosystem CO_(2) exchange and productivity in this tropical savanna.management,however,significantly modifies C fluxes and productivity through its influence on soil moisture,plant species composition and aboveground green biomass and should be taken into consideration in future similar studies. 展开更多
关键词 tropical humid savanna abandoned croplands biomass production ecosystem CO_(2)exchange livestock grazing soil water content
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部