Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing,mowing and fertilization.Many previous studies showed that this can cause evolutionary changes in mean trait values,but l...Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing,mowing and fertilization.Many previous studies showed that this can cause evolutionary changes in mean trait values,but little is known about the evolution of phenotypic plasticity in response to land use.In this study,we aimed to elucidate the relationships between phenotypic plasticity—specifically,regrowth ability after biomass removal—and the intensity of grassland management and levels of temporal variation therein.Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal.We used three common plant species from temperate European grasslands,with seed material from 58 to 68 populations along gradients of land-use intensity,ranging from extensive(only light grazing)to very intensive management(up to four cuts per year).Important Findings In two out of three species,we found significant population differentiation in regrowth ability after clipping.While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin,we found a relationship with its temporal variation in Plantago lanceolata,where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping.Therefore,while mean grazing and mowing intensity may not select for regrowth ability,the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.展开更多
基金The work was supported by the Deutsche Forschungsgemeinschaft Priority Program 1374'Infrastructure-Biodiversity-Exploratories’through project SCHE 1899/1-1 to J.F.S.
文摘Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing,mowing and fertilization.Many previous studies showed that this can cause evolutionary changes in mean trait values,but little is known about the evolution of phenotypic plasticity in response to land use.In this study,we aimed to elucidate the relationships between phenotypic plasticity—specifically,regrowth ability after biomass removal—and the intensity of grassland management and levels of temporal variation therein.Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal.We used three common plant species from temperate European grasslands,with seed material from 58 to 68 populations along gradients of land-use intensity,ranging from extensive(only light grazing)to very intensive management(up to four cuts per year).Important Findings In two out of three species,we found significant population differentiation in regrowth ability after clipping.While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin,we found a relationship with its temporal variation in Plantago lanceolata,where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping.Therefore,while mean grazing and mowing intensity may not select for regrowth ability,the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.