期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ground reaction curves for circular excavations in non-homogeneous,axisymmetric strain-softening rock masses 被引量:7
1
作者 j.gonzález-cao F.Varas +1 位作者 F.G.Bastante L.R.Alejano 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第6期431-442,共12页
Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress feld can be derived based on... Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress feld can be derived based on the self-similarity of the solution. As a consequence, they only apply when the rock mass is homogeneous and so exclude many cases of practical interest. We describe a robust and fast numerical technique that solves the tunnel unloading problem and estimates the ground reaction curve for a cylindrical cavity excavated in a rock mass with properties depending on the radial coordinate, where the solution is no longer self-similar. The solution is based on a continuation-like approach(associated with the unloading and with the incremental formulation of the elasto-plastic behavior), fnite element spatial discretization and a combination of explicit sub-stepping schemes and implicit techniques to integrate the constitutive law, so as to tackle the diffculties associated with both strong strain-softening and elasto-brittle behaviors. The developed algorithm is used for two practical ground reaction curve computation applications. The frst application refers to a tunnel surrounded by an aureole of material damaged by blasting and the second to a tunnel surrounded by a ring-like zone of reinforced(rock-bolted) material. 展开更多
关键词 Tunnel convergence Ground reaction curves Strain-softening rock masses Tunnel with an aureole of a different material
下载PDF
Analysis of the hydrological safety of dams combining two numerical tools:Iber and DualSPHysics 被引量:1
2
作者 j.gonzález-cao O.García-Feal +2 位作者 j.M.Domínguez A.j.C.Crespo M.Gómez-Gesteira 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第1期87-94,共8页
The upgrade of the hydrological safety of dams is a critical issue to avoid failures that can dramatically affect people and assets. This paper shows a numerical methodology to analyse the safety of the Belesar dam(N... The upgrade of the hydrological safety of dams is a critical issue to avoid failures that can dramatically affect people and assets. This paper shows a numerical methodology to analyse the safety of the Belesar dam(NW, Spain) based on two different numerical codes. First, a mesh-based code named Iber, suited to deal with large 2-D domains, is used to simulate the impoundment. The initial conditions and the inlet provided to Iber correspond to the maximum water elevation and the maximum expected inflow to the impoundment defined in the technical specifications of the dam, which are associated to the more hazardous operation conditions of the dam. Iber provides information about the time needed for water to attain the crest of the dam when floodgates are closed. In addition, it also provides the velocity of discharge when gates are opened. Then, a mesh-free code named DualSPHysics, which is especially suited to deal with complex and violent 3-D flows, is used to reproduce the behaviour of one of the spillways of the dam starting from the results obtained with Iber, which are used as inlet conditions for DualSPHysics. The combined results of both model show that the left spillway can discharge the surplus of water associated to the maximum inflow to the reservoir if the gates of the spillways are opened before the overtopping of the dam was observed. In addition, water depth measured on the spillway is considerably lower than the lateral walls, preventing overtopping. Finally, velocities at different points of the spillway showed to be in good agreement with theoretical values. 展开更多
关键词 Hydrological safety DAM numerical simulation Iber DualSPHysics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部