期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy 被引量:1
1
作者 j.k.madhukesh G.K.RAMESH +2 位作者 B.C.PRASANNAKUMARA S.A.SHEHZAD F.M.ABBASI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第8期1191-1204,共14页
Bioconvection research is primarily focused on the augmentation of energy and mass species,which has implications in the processes intensification,mechanical,civil,electronics,and chemical engineering branches.Advance... Bioconvection research is primarily focused on the augmentation of energy and mass species,which has implications in the processes intensification,mechanical,civil,electronics,and chemical engineering branches.Advanced bioconvection technology sectors include cooling systems for electronic devices,building insulation,and geothermal nuclear waste disposal.Hence,the present investigation is mainly discoursing the impact of Marangoni convention Casson nanoliquid flow under gyrotactic microorganisms over the porous sheet.The partial differential equations(PDEs)are re-structured into ordinary differential equations(ODEs)via suitable similar variables.These ODEs are numerically solved with the help of the spectral relaxation method(SRM).The numerical outcomes are illustrated graphically for various parameters over velocity,temperature,concentration,and bioconvection profiles.Three-dimensional(3 D)views of important engineering parameters are illustrated for various parameters.The velocity of the Casson nanoliquid increases with increasing the Marangoni parameter but decreases against higher porosity parameter.The surface drag force enhances for enhancement in the Marangoni number.The rate of mass transmission is higher for reaction rate constraint but diminishes for activation energy parameter.The higher radiative values augment the rate of heat transmission. 展开更多
关键词 Casson nanofluid activation energy thermal radiation BIOCONVECTION Marangoni convection
下载PDF
Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition
2
作者 B.C.Prasannakumara j.k.madhukesh G.K.Ramesh 《Propulsion and Power Research》 SCIE 2023年第2期284-296,共13页
The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink,thermophoretic particle deposition,and bioconvection.The collec... The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink,thermophoretic particle deposition,and bioconvection.The collection of PDEs(partial differential equations)that represent the fluid moment is converted to a system of ODEs(ordinary differential equations)with the use of suitable similarity variables,and these equations are then numerically solved using Runge Kutta Fehlberg and the shooting approach.For different physical limitations,the numerical results are visually represented.The results show that increasing the porosity characteristics reduces velocity.The mass transfer decreases as the thermophoretic limitation increases.Increases in the porosity parameter reduce skin friction,increases in the solid volume fraction improve the rate of thermal distribution,and increases in the thermophoretic parameter increase the rate of mass transfer. 展开更多
关键词 Exponential stretching sheet NANOFLUID Heat source/sink Thermophoretic particle deposition Bio convection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部