期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lithium bis(trifluoromethanesulfonyl)imide blended in polyurethane acrylate photocurable solid polymer electrolytes for lithium-ion batteries 被引量:1
1
作者 Cristian Mendes-Felipe j.C.Barbosa +4 位作者 R.Gonsalves D.Miranda C.M.Costa j.l.vilas-vilela S.lanceros-Mendez 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期485-496,I0011,共13页
The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices, such as batteries. Lithium-ion batteries (LIBs) are the most studied battery systems due to th... The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices, such as batteries. Lithium-ion batteries (LIBs) are the most studied battery systems due to their high performance. Among the different battery components, the separator allows the control of lithium ion diffusion between the electrodes. To overcome some drawbacks of liquid electrolytes, including safety and environmental issues, solid polymer electrolytes (SPEs) are being developed. In this work, a UV photocurable polyurethane acrylate (PUA) resin has been blended with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) up to 30 wt% LiTFSI content to reach a maximum ionic conductivity of 0.0032 mS/cm at room temperature and 0.09 mS/cm at 100 ℃. Those values allowed applying the developed materials as photocurable SPE in Swagelok type Li/C-LiFePO_(4) half-cells, reaching a battery discharge capacity value of 139 mAh.g^(−1) at C/30 rate. Those results, together with the theoretical studies of the discharge capacity at different C-rates and temperatures for batteries with LiTFSI/PUA SPE demonstrate the suitability of the developed photocurable SPE for LIB applications. 展开更多
关键词 Solid polymer electrolytes PHOTOCURING Polyurethane acrylate LITFSI Li-ion batteries
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部