Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analyt...Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analytical solution for a porous isotropic elastic cylinder in terms of the pressure,stresses,and elastic displacement.We obtain the solution by performing a Laplace transform on the governing equations,which are those of Biot's poroelasticity in cylindrical polar coordinates.We enforce radial boundary conditions and obtain the solution in the Laplace transformed domain before reverting back to the time domain.The sensitivity analysis is then carried out,considering only the derived pressure solution.This analysis finds that the time t,Biot's modulus M,and Poisson's ratio ν have the highest influence on the pressure whereas the initial value of pressure P_(0) plays a very little role.展开更多
This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafuncti...This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.展开更多
Mechanical models of residually stressed fibre-reinforced solids,which do not resist bending,have been developed in the literature.However,in some residually stressed fibre-reinforced elastic solids,resistance to fibr...Mechanical models of residually stressed fibre-reinforced solids,which do not resist bending,have been developed in the literature.However,in some residually stressed fibre-reinforced elastic solids,resistance to fibre bending is significant,and the mechanical behavior of such solids should be investigated.Hence,in this paper,we model the mechanical aspect of residually stressed elastic solids with bending stiffness due to fibre curvature,which up to the authors’knowledge has not been mechanically modeled in the past.The proposed constitutive equation involves a nonsymmetric stress and a couple-stress tensor.Spectral invariants are used in the constitutive equation,where each spectral invariant has an intelligible physical meaning,and hence they are useful in experiment and analysis.A prototype strain energy function is proposed.Moreover,we use this prototype to give results for some cylindrical boundary value problems.展开更多
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo...A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.展开更多
基金Project supported by the Engineering and Physical Sciences Research Council of U. K.(Nos. EP/S030875/1, EP/T017899/1, and EP/T517896/1)。
文摘Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analytical solution for a porous isotropic elastic cylinder in terms of the pressure,stresses,and elastic displacement.We obtain the solution by performing a Laplace transform on the governing equations,which are those of Biot's poroelasticity in cylindrical polar coordinates.We enforce radial boundary conditions and obtain the solution in the Laplace transformed domain before reverting back to the time domain.The sensitivity analysis is then carried out,considering only the derived pressure solution.This analysis finds that the time t,Biot's modulus M,and Poisson's ratio ν have the highest influence on the pressure whereas the initial value of pressure P_(0) plays a very little role.
文摘This paper is dedicated to applying the Fourier amplitude sensitivity test(FAST)method to the problem of mixed extension and inflation of a circular cylindrical tube in the presence of residual stresses.The metafunctions and the Ishigami function are considered in the sensitivity analysis(SA).The effects of the input variables on the output variables are investigated,and the most important parameters of the system under the applied pressure and axial force such as the axial stretch and the azimuthal stretch are determined.
文摘Mechanical models of residually stressed fibre-reinforced solids,which do not resist bending,have been developed in the literature.However,in some residually stressed fibre-reinforced elastic solids,resistance to fibre bending is significant,and the mechanical behavior of such solids should be investigated.Hence,in this paper,we model the mechanical aspect of residually stressed elastic solids with bending stiffness due to fibre curvature,which up to the authors’knowledge has not been mechanically modeled in the past.The proposed constitutive equation involves a nonsymmetric stress and a couple-stress tensor.Spectral invariants are used in the constitutive equation,where each spectral invariant has an intelligible physical meaning,and hence they are useful in experiment and analysis.A prototype strain energy function is proposed.Moreover,we use this prototype to give results for some cylindrical boundary value problems.
基金Project supported by the National Council of Humanities,Sciences,and Technologies of Mexico(Nos.CF-2023-G-792 and CF-2023-G-1458)the National Council for Scientific and Technological Development of Brazil(No.09/2023)the Research on Productivity of Brazil(No.307188/2023-0)。
文摘A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.