High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the c...High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area.展开更多
Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted value...Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted values, which depends on the initial sampling. To produce reliable predictions efficiently the minimal sampling size and combination should be decided firstly, which could avoid the misspent funds for field sampling work. A 7.9 hectare silage field close to the Agricultural Research institute at Hillsborough, Northern Ireland, was selected for the study. Soil samples were collected from the field at 25 m intervals in a rectangular grid to provide a database of selected soil properties. Different data combinations were subsequently abstracted from this database for comparison purposes, and ordinary kriging used to produce interpolated soil maps. These predicted data groups were compared using least significant difference (LSD) test method. The results showed that the 62 sampling sizes of triangle arrangement for soil available K were sufficient to reach the required accuracy. The triangular sample combination proved to be superior to a rectangular one of similar sample size.展开更多
基金Project supported in part by the National Natural Science Foundation of China (No. 40201021) Zhejiang Provincial Natural Science Foundation of China (No. 402016).
文摘High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area.
基金Project supported by the British Council !(No. SHA/ 992/ 297) the Natural Science Foundation of Zhejiang Province, China! (N
文摘Field nutrient distribution maps obtained from the study on soil variations within fields are the basis of precision agriculture. The quality of these maps for management depends on the accuracy of the predicted values, which depends on the initial sampling. To produce reliable predictions efficiently the minimal sampling size and combination should be decided firstly, which could avoid the misspent funds for field sampling work. A 7.9 hectare silage field close to the Agricultural Research institute at Hillsborough, Northern Ireland, was selected for the study. Soil samples were collected from the field at 25 m intervals in a rectangular grid to provide a database of selected soil properties. Different data combinations were subsequently abstracted from this database for comparison purposes, and ordinary kriging used to produce interpolated soil maps. These predicted data groups were compared using least significant difference (LSD) test method. The results showed that the 62 sampling sizes of triangle arrangement for soil available K were sufficient to reach the required accuracy. The triangular sample combination proved to be superior to a rectangular one of similar sample size.