Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from...Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from faceted to script-like with increasing cooling rate. Varying the carbon content from 40X10-6 to 320X10-6, the morphology of carbides changes from blocky, rod-like into script-like. Scanning electron microscopy observation of deep-etched samples indicates that these carbides evolve from octahedral to dendritic and then into welldeveloped dendrites accordingly in a three-dimensional manner. The morphology evolution is discussed from the viewpoint of the preferential growth orientation of fcc crystals and the carbide growth rate during directional solidification.展开更多
The evolution of microstructure and the stress rupture properties of long term thermally exposed GH3535 alloy have been investigated. It was found that M6 C carbides presented in the solid solution heat treated sample...The evolution of microstructure and the stress rupture properties of long term thermally exposed GH3535 alloy have been investigated. It was found that M6 C carbides presented in the solid solution heat treated samples. During long term thermal exposure at 700 C, fine M12 C carbides precipitated preferentially at grain boundaries. These carbides coexisted with the pre-exiting M6 C. The stress rupture life of700 C/1000 h exposed sample under creep testing at 650 C/324 MPa is 93 h. It is much longer than that of the solid solution samples. No noticeable changes could be detected in both the microstructure and stress rupture lives when the samples were exposed for time longer than 1000 h M12 C carbides were found to be beneficial to the creep properties. The cracks initiated at the interface of M6 C carbides and matrix, which led to a lower creep rupture life.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB631201)the National Natural Science Foundation of China (Grant No. 51201164)
文摘Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from faceted to script-like with increasing cooling rate. Varying the carbon content from 40X10-6 to 320X10-6, the morphology of carbides changes from blocky, rod-like into script-like. Scanning electron microscopy observation of deep-etched samples indicates that these carbides evolve from octahedral to dendritic and then into welldeveloped dendrites accordingly in a three-dimensional manner. The morphology evolution is discussed from the viewpoint of the preferential growth orientation of fcc crystals and the carbide growth rate during directional solidification.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA020404040)the National High Technology Research and Development Program of China (Grant No. 2012AA03A511)
文摘The evolution of microstructure and the stress rupture properties of long term thermally exposed GH3535 alloy have been investigated. It was found that M6 C carbides presented in the solid solution heat treated samples. During long term thermal exposure at 700 C, fine M12 C carbides precipitated preferentially at grain boundaries. These carbides coexisted with the pre-exiting M6 C. The stress rupture life of700 C/1000 h exposed sample under creep testing at 650 C/324 MPa is 93 h. It is much longer than that of the solid solution samples. No noticeable changes could be detected in both the microstructure and stress rupture lives when the samples were exposed for time longer than 1000 h M12 C carbides were found to be beneficial to the creep properties. The cracks initiated at the interface of M6 C carbides and matrix, which led to a lower creep rupture life.