期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment 被引量:3
1
作者 Y.H.Liu Z.R.Zhang +5 位作者 J.Wang Y.Li H.X.Li L.Y.Jia J.H.Wang j.s.zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期720-734,共15页
Inferior absolute strength and dissolution properties are the main bottlenecks for the widespread application of dissolvable magnesium alloys in complex working environments for unconventional oil and gas resources.He... Inferior absolute strength and dissolution properties are the main bottlenecks for the widespread application of dissolvable magnesium alloys in complex working environments for unconventional oil and gas resources.Here,a novel functional peak-aged Mg-9.5Gd-2.7Y-0.9Zn-0.8Cu-0.4Ni(wt.%) alloy for fracturing tools is reported,and it possesses an ultimate tensile strength of 457.6 MPa,ultimate compressive strength of 620.7 MPa and dissolution rate of ~43.7 mg·cm^(-2)·h^(-1) in 3 wt.% KCl solutions at 93℃.The excellent strength of the agedalloy is primarily attributed to the combination of grain refinement,long-period stacking ordered(LPSO) strengthening,and precipitation strengthening induced by stacking fault and β’ phase,among which the precipitation strengthening is dominant.Further investigations confirm that the corrosion is triggered from the micro-galvanic coupling between the Mg matrix and the cathodic lamellar and block LPSO phases.Strip-shaped corrosion pits along with LPSO phases are subsequently formed,significantly accelerating corrosion.The β’ precipitates can effectively improve the strength without compromising the dissolution rate because of their nanoscale size.This study provides an excellent material selection for dissolvable fracturing tools and presents a strategy by which a synergistic combination of strength and dissolution rate is achieved via peak-aging treatment. 展开更多
关键词 Dissolvable magnesium alloy Peak-aging treatment Mechanical properties Micro-galvanic corrosion
下载PDF
Effect of trace Ni addition on microstructure,mechanical and corrosion properties of the extruded Mg-Gd-Y-Zr-Ni alloys for dissoluble fracturing tools 被引量:16
2
作者 J.Wang T.Li +4 位作者 H.X.Li Y.Z.Ma K.N.Zhao C.L.Yang j.s.zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1649-1660,共12页
Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability a... Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability after fracturing.In this study,the novel extruded Mg-10Gd-3Y-0.3Zr-xNi alloys will be reported and their microstructure,mechanical and corrosion behaviors will be also studied.The results show that Ni contents influence phase precipitation behaviors.With adding 0.2 wt%Ni,a large amount of Zr_(7)Ni_(10)phases will be precipitated insidesα-Mg matrix,directly leading to degradation of strength and large corrosion rate.With further increasing Ni contents,the precipitation phases can be changed from Mg_(5)RE to 18R-LPSO structure,resulting in higher mechanical properties and faster corrosion rate.Moreover,adding Ni element also change the texture orientation by influencing the precipitation behavior of the alloys.The alloys invented in this paper have attained the highest compressive and tensile properties among all the reported dissoluble magnesium alloys.This work is beneficial in understanding the role of Ni in the magnesium alloys and provides more materials alternatives for the fabrication of dissoluble fracturing tools. 展开更多
关键词 Dissoluble magnesium alloys MICROSTRUCTURE Mechanical properties Corrosion behaviors Fracturing tools
下载PDF
Determination of the number ofψ(3686)events taken at BESⅢ
3
作者 M.Ablikim M.N.Achasov +660 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li Ke Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Z.Li Xiaoyu Li Y.G.Li Z.J.Li Z.X.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.H.Liu Fang Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang Tao Yang Y.Yang Y.F.Yang Y.X.Yang Yifan Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang j.s.zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang Shuihan Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Yao Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第9期8-20,共13页
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ... The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6. 展开更多
关键词 ψ(3686) inclusive process Hadronic events BESⅢdetector
原文传递
Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process 被引量:9
4
作者 H.X.Zeng Z.W.Liu +2 位作者 j.s.zhang X.F.Liao H.Y.Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第1期50-54,共5页
Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as th... Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as the diffusion sources.The preliminary results show that the coercivity was successfully enhanced from 1000 kA/m to 1695,1156 and 1125 kA/m by Pr70Al20Cu10,La70Al20Cu10 and Al75Cu25(at.%) alloys diffusion,respectively,due to the formation of(Nd,Pr)-Fe-B,La2 O3 and c-Nd2 O3 phases respectively,after diffusion.It is also found that the corrosion resistance can be improved by Al-Cu diffusion due to the positive effects of Al and Cu elements in grain boundary.The present results demonstrated the various coercivity enhancement mechanisms for the GBDP based on different diffusion sources,and provided feasible solutions for cost reduction of GBDP and NdFeB production by saving RE resource. 展开更多
关键词 GRAIN BOUNDARY diffusion COST reduction COERCIVITY Microstructure Corrosion resistance
原文传递
Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys 被引量:7
5
作者 j.s.zhang W. Li +5 位作者 X.F. Liao H.Y. Yu L.Z. Zhao H.X. Zeng D.R. Peng Z.W. Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期1877-1885,共9页
To develop Ce based permanent magnets with high performance/cost ratio, Ta doping is was employed to enhance the magnetic performance of Ce-Fe-B alloys. For melt spun Cei7Fe78-xTaxB6 (x = 0-1) alloys, the coercivity H... To develop Ce based permanent magnets with high performance/cost ratio, Ta doping is was employed to enhance the magnetic performance of Ce-Fe-B alloys. For melt spun Cei7Fe78-xTaxB6 (x = 0-1) alloys, the coercivity Hc increases from 439 to 553 kA/m with increasing x value from 0 to 0.75. Microstructure characterizations indicate that Ta doping is helpful for grain refinement. A second phase of TaB2 is observed in Ce17Fe77.25Tao.75B6 alloy, which acts as the pinning center of the magnetic domains, resulting in the change of coercivity mechanism from nucleation type to nucleation +pinning type. The micromagnetic simulation confirms that non-magnetic particles within hard magnetic phase can increase the demagnetization field around them and it is crucial for preventing the further magnetization reverse by pinning effect. Take the advantage of Ta doping for enhancing the coercivity, Ce content of Ce-Fe-B alloy can be further cut down to increase the remanence Jr due to the reduced volume fraction of CeFe2 phase and increased Fe/Ce ratio. As a result, a good combination of magnetic properties with Hc = 514 kA/m, Jr = 0.49 T, and the maximum energy product (BH)max = 36 kJ/m^3 have been obtained in Ce15Fe79.25Tao.75B6 alloy. It is expected that the present work can serve as a useful reference for designing new permanent magnetic materials with low-cost. 展开更多
关键词 MELT-SPINNING PERMANENT MAGNETS Second phase COERCIVITY mechanism Thermal stability
原文传递
Tailoring precipitation/properties and related mechanisms for a high-strength aluminum alloy plate via low-temperature retrogression and re-aging processes 被引量:3
6
作者 L.G.Hou H.Yu +7 位作者 Y.W.Wang L.You Z.B.He C.M.Wu D.G.Eskin L.Katgerman L.Z.Zhuang j.s.zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期15-35,共21页
The retrogression and re-aging(RRA)processes,aimed mainly at tailoring intergranular precipitates,could significantly improve the corrosion resistance(i.e.,stress corrosion cracking resistance)without considerably dec... The retrogression and re-aging(RRA)processes,aimed mainly at tailoring intergranular precipitates,could significantly improve the corrosion resistance(i.e.,stress corrosion cracking resistance)without considerably decreasing the strength,which signifies that an efficient control of the size,distribution and evolution of intergranular and intragranular precipitates becomes critical for the integrated properties of the(mid-)thick high-strength Al alloy plates.Compared to RRA process with retrogression at200℃ (T77),this study investigated the impact of a modified RRA process(MT77)with lower retrogression temperatures(155-175℃ )and first-stage under-aging on the properties of a high-strength AA7050 Al alloy,in combination with detailed precipitate characterization.The study showed that the strength/microhardness of the RRA-treated alloys decreased with raising retrogression temperature and/or prolonging retrogression time,along with the increased electrical conductivity.The rapid responsiveness of microstructure/property typical of retrogression at 200℃ was obviously postponed or decreased by using MT77 process with longer retrogression time that was more suitable for treating the(mid-)thick plates.On the other hand,higher retrogression temperature facilitated more intragranularηprecipitates,coarse intergranular precipitates and wide precipitate free zones,which prominently increased the electrical conductivity alongside a considerable strength loss as compared to the MT77-treated alloys.With the preferred MT77 process,the high strength approaching T6 level as well as good corrosion resistance was achieved.However,though a relatively homogeneous through-thickness strength was obtained,some small discrepancies of properties between the central and surface areas of an 86-mm thick 7050 Al alloy plate were observed,possibly related to the quenching sensitivity.The precipitate evolution and mechanistic connection to the properties were discussed and reviewed for high-strength Al alloys along with suggestions for further RRA optimization. 展开更多
关键词 Aluminum alloy Heat treatment PRECIPITATION Strength Grain boundary
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部