Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properti...Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properties of the magnets have been studied. It shows that the coercivity rises gradually, while the remanence decreases simultaneously with increasing Cu doping amount. Microstructure observation reveals that Cu ele- ment enriches mainly the Nd-rich phase. Autoclave test results show that the corrosion rate of the magnets decreases with increasing Cu content. After oxidation, the maximum energy product loss of the magnets with 0 and 0.2 wt% Cu nano-particles doping are 6.13% and 0.g9%, respectively. Therefore, it is concluded that Cu nano-particles doping is a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnets.展开更多
Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex st...Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].展开更多
基金supported by the National Natural Science Foundation of China (No. 51001002)the Research Fund for the Doctoral Program of Higher Education of China (No. 20091103120024)+2 种基金the National High Technology Research and Development Program of China (No.2012AA063201)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission (No. KZ201110005007)211 Project of Beijing University of Technology and Rixin Talents of Beijing University of Technology
文摘Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properties of the magnets have been studied. It shows that the coercivity rises gradually, while the remanence decreases simultaneously with increasing Cu doping amount. Microstructure observation reveals that Cu ele- ment enriches mainly the Nd-rich phase. Autoclave test results show that the corrosion rate of the magnets decreases with increasing Cu content. After oxidation, the maximum energy product loss of the magnets with 0 and 0.2 wt% Cu nano-particles doping are 6.13% and 0.g9%, respectively. Therefore, it is concluded that Cu nano-particles doping is a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnets.
基金the National Science and Technology Major Project,China(Nos.2017-VI-0002-0072,Y2019-VII0011-0151)the National Key Research and Development Program,China(No.2018YFB1106600)。
文摘Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].