期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations
1
作者 j.wu S.F.WANG P.PERDIKARIS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1199-1224,共26页
We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks an... We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks and employ the Fourier positional encodings to enable the approximation of high-frequency modes.We formulate a self-supervised training objective for spectral learning and propose a novel regularization mechanism to ensure that the network finds the exact eigenfunctions instead of a space spanned by the eigenfunctions.Furthermore,we investigate the effect of weight normalization as a mechanism to alleviate the risk of recovering linear dependent modes,allowing us to accurately recover a large number of eigenpairs.The effectiveness of our methods is demonstrated across a collection of representative benchmarks including both local and non-local diffusion operators,as well as high-dimensional time-series data from a video sequence.Our results indicate that the present algorithm can outperform competing approaches in terms of both approximation accuracy and computational cost. 展开更多
关键词 spectral learning partial differential equation(PDE) neural network slow features analysis
下载PDF
Differences in Soil Microbial Biomass and Activity for Six Agroecosystems with a Management Disturbance Gradient 被引量:11
2
作者 ZHANGWei-Jian FENGJin-Xia +1 位作者 j.wu K.PARKER 《Pedosphere》 SCIE CAS CSCD 2004年第4期441-448,共8页
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o... Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass. 展开更多
关键词 农业系统 碳保持力 干扰强度 单位面积微生物数量 土壤微生物活性
下载PDF
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials 被引量:3
3
作者 L.Zhang H.W.Zhang +1 位作者 j.wu B.Yan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期481-490,共10页
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and c... Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved. 展开更多
关键词 Bimodular materials Non-smooth stressstrain relationship Parametric variational principle Complementarity
下载PDF
Material and structural instabilities of single-wall carbon nanotubes 被引量:1
4
作者 j.wu K.C.Hwang +1 位作者 J.Song Y.Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期285-288,共4页
The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the s... The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability. 展开更多
关键词 Carbon nanotubes INSTABILITY
下载PDF
用遥感和GIS技术评价留用地的土壤特性 被引量:1
5
作者 j.wu M.D.Nellis +4 位作者 M.D.Ransom K.P.Price S.L.Egbert 马宗兆 杞杰 《水土保持科技情报》 1999年第1期10-13,共4页
美国国会确定留用地保护项目(CRP)的最初国的是为减少农用地边缘的土壤侵蚀。全美目前有2.43×1.06hm2农田登记纳入该项计划。对该项目减少侵蚀的有效性评价将对其令后的实施修订有很大应用价值。在堪萨斯州Finney县利用卫星图像... 美国国会确定留用地保护项目(CRP)的最初国的是为减少农用地边缘的土壤侵蚀。全美目前有2.43×1.06hm2农田登记纳入该项计划。对该项目减少侵蚀的有效性评价将对其令后的实施修订有很大应用价值。在堪萨斯州Finney县利用卫星图像导出土壤使用和覆差情况图。通过地理信息系统(GIS)将该图与计算机编程的土壤探测信息(SSURGO)结合,对每种利用地块类型(去除了该县的最高侵蚀系数和最易受侵蚀的地块)土壤特性和侵蚀系数进行分析,该研究表明CIS和遥感技术对评价和监测该留用地保护计划有许多优点。 展开更多
关键词 留用地保护计划 侵蚀系数 GIS 遥感 土壤特性
下载PDF
Multiple stacking of InGaAs/GaAs(731) nanostructures
6
作者 Y.Z.Xie V.P.Kunets +4 位作者 Z.M.Wang V.Dorogan Y.I.Mazur j.wu G.J.Salamo 《Nano-Micro Letters》 SCIE EI CAS 2009年第1期1-3,共3页
We studied the multilayering effects of InGaAs quantum dots(QDs) on GaAs(731), a surface lying inside of the stereographic triangle. The surfaces after stacking 16 InGaAs layers were characterized with highly non-unif... We studied the multilayering effects of InGaAs quantum dots(QDs) on GaAs(731), a surface lying inside of the stereographic triangle. The surfaces after stacking 16 InGaAs layers were characterized with highly non-uniformity of QD spatial distribution. The bunched step regions driven by strain accumulation are decorated by QDs, therefore GaAs(731) becomes a good candidate substrate for the growth of QD clusters. The unique optical properties of the QD clusters are revealed by photoluminescence measurements. By adjusting the coverage of InGaAs, a bamboo-like nanostructured surface was observed and the quantum dots aligned up in clusters to separate the "bamboo" into sections. 展开更多
关键词 Quantum dots MBE High index surfaces NANOSTRUCTURES Atomic force microscopy
下载PDF
Long-term corrosion evolution associated with the structural heterogeneities of an Fe-based amorphous coating in H_(3)BO_(3)solution at various temperatures
7
作者 D.B.Wang j.wu +5 位作者 J.P.Cui Q.Wang T.R.Li W.Emori S.D.Zhang J.Q.Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期233-248,共16页
Understanding the long-term corrosion behavior of neutron absorber materials in H_(3)BO_(3)solution is crucial for the materials applications in spent fuel storage.In this paper,long-term corrosion evolution for 180 d... Understanding the long-term corrosion behavior of neutron absorber materials in H_(3)BO_(3)solution is crucial for the materials applications in spent fuel storage.In this paper,long-term corrosion evolution for 180 d in relation to the structural heterogeneities of an Fe-based amorphous coating(AMC)in H_(3)BO_(3)solution at various temperatures was systematically investigated.Results indicate that the coating corrosion could be divided into three distinct stages.Initially,the corrosion resistance increased owing to the thickening and composition evolution of the passive films.Subsequently,the corrosion rate was kept almost constant in the second stage,which connected with the steady state of the passive film.Finally,the corrosion resistance of coating reduced gradually owing to the initiation and penetration of local-ized corrosion.Interestingly,it was revealed that the localized corrosion was initiated at the relatively Cr-depleted amorphous matrix in the deep pores of the coating.This could be attributed to the synergy of Cr-depletion and occlusive effect in the deep pores during long-term immersion.With the elevation of temperature,the localized corrosion was enhanced due to the accumulation of the H+in the pores to swiftly reach the critical conditions for passive film breakdown.This work provides insights into the long-term corrosion mechanism of Fe-based AMCs in H_(3)BO_(3)solution and offers meaningful contributions to the design of new corrosion resistant neutron absorbing coatings for spent fuel storage applications. 展开更多
关键词 AMC Boric acid EIS Long-term corrosion Temperature
原文传递
Search for the rare decays W^(+)→D_(s)^(+)γ and Z→D^(0)γ at LHCb
8
作者 R.Aaij A.S.W.Abdelmotteleb +1069 位作者 C.Abellan Beteta F.Abudinén T.Ackernley B.Adeva M.Adinolfi P.Adlarson H.Afsharnia C.Agapopoulou C.A.Aidala Z.Ajaltouni S.Akar K.Akiba J.Albrecht F.Alessio M.Alexander A.Alfonso Albero Z.Aliouche P.Alvarez Cartelle R.Amalric S.Amato J.L.Amey Y.Amhis L.An L.Anderlini M.Andersson A.Andreianov M.Andreotti D.Andreou D.Ao F.Archilli A.Artamonov M.Artuso E.Aslanides M.Atzeni B.Audurier S.Bachmann M.Bachmayer J.J.Back A.Bailly-reyre P.Baladron Rodriguez V.Balagura W.Baldini J.Baptista de Souza Leite M.Barbetti R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov J.M.Basels G.Bassi B.Batsukh A.Battig A.Bay A.Beck M.Becker F.Bedeschi I.B.Bediaga A.Beiter V.Belavin S.Belin V.Bellee K.Belous I.Belov I.Belyaev G.Benane G.Bencivenni E.Ben-Haim A.Berezhnoy R.Bernet S.Bernet Andres D.Berninghoff H.C.Bernstein C.Bertella A.Bertolin C.Betancourt F.Betti Ia.Bezshyiko S.Bhasin J.Bhom L.Bian M.S.Bieker N.V.Biesuz S.Bifani P.Billoir A.Biolchini M.Birch F.C.R.Bishop A.Bitadze A.Bizzeti M.P.Blago T.Blake F.Blanc J.E.Blank S.Blusk D.Bobulska J.A.Boelhauve O.Boente Garcia T.Boettcher A.Boldyrev C.S.Bolognani R.Bolzonella N.Bondar F.Borgato S.Borghi M.Borsato J.T.Borsuk S.A.Bouchiba T.J.V.Bowcock A.Boyer C.Bozzi M.J.Bradley S.Braun A.Brea Rodriguez J.Brodzicka A.Brossa Gonzalo J.Brown D.Brundu A.Buonaura L.Buonincontri A.T.Burke C.Burr A.Bursche A.Butkevich J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese L.Calefice S.Cali R.Calladine M.Calvi M.Calvo Gomez P.Campana D.H.Campora Perez A.F.Campoverde Quezada S.Capelli L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini P.Carniti L.Carus A.Casais Vidal R.Caspary G.Casse M.Cattaneo G.Cavallero V.Cavallini S.Celani J.Cerasoli D.Cervenkov A.J.Chadwick M.G.Chapman M.Charles Ph.Charpentier C.A.Chavez Barajas M.Chefdeville C.Chen S.Chen A.Chernov S.Chernyshenko V.Chobanova S.Cholak M.Chrzaszcz A.Chubykin V.Chulikov P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek G.Ciullo P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo L.Congedo A.Contu N.Cooke I.Corredoira G.Corti B.Couturier D.C.Craik M.Cruz Torres R.Currie C.L.Da Silva S.Dadabaev L.Dai X.Dai E.Dall'Occo J.Dalseno C.D'Ambrosio J.Daniel A.Danilina P.d'Argent J.E.Davies A.Davis O.De Aguiar Francisco J.de Boer K.De Bruyn S.De Capua M.De Cian U.De Freitas Carneiro Da Graca E.De Lucia J.M.De Miranda L.De Paula M.De Serio D.De Simone P.De Simone F.De Vellis J.A.de Vries C.T.Dean F.Debernardis D.Decamp V.Dedu L.Del Buono B.Delaney H.-P.Dembinski V.Denysenko O.Deschamps F.Dettori B.Dey P.Di Nezza I.Diachkov S.Didenko L.Dieste Maronas S.Ding V.Dobishuk A.Dolmatov C.Dong A.M.Donohoe F.Dordei A.C.dos Reis L.Douglas A.G.Downes P.Duda M.W.Dudek L.Dufour V.Duk P.Durante M.M.Duras J.M.Durham D.Dutta A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman C.Eirea Orro S.Eisenhardt E.Ejopu S.Ek-In L.Eklund S.Ely A.Ene E.Epple S.Escher J.Eschle S.Esen T.Evans F.Fabiano L.N.Falcao Y.Fan B.Fang L.Fantini M.Faria S.Farry D.Fazzini L.F Felkowski M.Feo M.Fernandez Gomez A.D.Fernez F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer D.S.Fitzgerald C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty D.Foulds-Holt V.Franco Lima M.Franco Sevilla M.Frank E.Franzoso G.Frau C.Frei D.A.Friday J.Fu Q.Fuehring T.Fulghesu E.Gabriel G.Galati M.D.Galati A.Gallas Torreira D.Galli S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao Y.Gao M.Garau L.M.Garcia Martin P.Garcia Moreno J.García Pardiaas B.Garcia Plana F.A.Garcia Rosales L.Garrido C.Gaspar R.E.Geertsema D.Gerick L.L.Gerken E.Gersabeck M.Gersabeck T.Gershon L.Giambastiani V.Gibson H.K.Giemza A.L.Gilman M.Giovannetti A.Gioventù P.Gironella Gironell C.Giugliano M.A.Giza K.Gizdov E.L.Gkougkousis V.V.Gligorov C.Gabel E.Golobardes D.Golubkov A.Golutvin A.Gomes S.Gomez Fernandez F.Goncalves Abrantes M.Goncerz G.Gong I.V.Gorelov C.Gotti J.P.Grabowski T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.T.Grecu L.M.Greeven N.A.Grieser L.Grillo S.Gromov B.R.Gruberg Cazon C.Gu M.Guarise M.Guittiere P.A.Günther E.Gushchin A.Guth Y.Guz T.Gys T.Hadavizadeh C.Hadjivasiliou G.Haefeli C.Haen J.Haimberger S.C.Haines T.Halewood-leagas M.M.Halvorsen P.M.Hamilton J.Hammerich Q.Han X.Han E.B.Hansen S.Hansmann-Menzemer L.Hao N.Harnew T.Harrison C.Hasse M.Hatch J.He K.Heijhoff C.Henderson R.D.L.Henderson A.M.Hennequin K.Hennessy L.Henry J.Herd J.Heuel A.Hicheur D.Hill M.Hilton S.E.Hollitt J.Horswill R.Hou Y.Hou J.Hu J.Hu W.Hu X.Hu W.Huang X.Huang W.Hulsbergen R.J.Hunter M.Hushchyn D.Hutchcroft P.Ibis M.Idzik D.Ilin P.Ilten A.Inglessi A.Iniukhin A.Ishteev K.Ivshin R.Jacobsson H.Jage S.J.Jaimes Elles S.Jakobsen E.Jans B.K.Jashal A.Jawahery V.Jevtic E.Jiang X.Jiang Y.Jiang M.John D.Johnson C.R.Jones T.P.Jones B.Jost N.Jurik I.Juszczak S.Kandybei Y.Kang M.Karacson D.Karpenkov M.Karpov J.W.Kautz F.Keizer D.M.Keller M.Kenzie T.Ketel B.Khanji A.Kharisova S.Kholodenko G.Khreich T.Kirn V.S.Kirsebom O.Kitouni S.Klaver N.Kleijne K.Klimaszewski M.R.Kmiec S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg M.Korolev I.Kostiuk O.Kot S.Kotriakhova A.Kozachuk P.Kravchenko L.Kravchuk R.D.Krawczyk M.Kreps S.Kretzschmar P.Krokovny W.Krupa W.Krzemien J.Kubat S.Kubis W.Kucewicz M.Kucharczyk V.Kudryavtsev A.Kupsc D.Lacarrere G.Lafferty A.Lai A.Lampis D.Lancierini C.Landesa Gomez J.J.Lane R.Lane G.Lanfranchi C.Langenbruch J.Langer O.Lantwin T.Latham F.Lazzari M.Lazzaroni R.Le Gac S.H.Lee R.Lefèvre A.Leflat S.Legotin P.Lenisa O.Leroy T.Lesiak B.Leverington A.Li H.Li K.Li P.Li P.-R.Li S.Li T.Li T.Li Y.Li Z.Li X.Liang C.Lin T.Lin R.Lindner V.Lisovskyi R.Litvinov G.Liu H.Liu Q.Liu S.Liu A.Lobo Salvia A.Loi R.Lollini J.Lomba Castro I.Longstaff J.H.Lopes A.Lopez Huertas S.López Soliao G.H.Lovell Y.Lu C.Lucarelli D.Lucchesi S.Luchuk M.Lucio Martinez V.Lukashenko Y.Luo A.Lupato E.Luppi A.Lusiani K.Lynch X.-R.Lyu L.Ma R.Ma S.Maccolini F.Machefert F.Maciuc I.Mackay V.Macko P.Mackowiak L.R.Madhan Mohan A.Maevskiy D.Maisuzenko M.W.Majewski J.J.Malczewski S.Malde B.Malecki A.Malinin T.Maltsev G.Manca G.Mancinelli C.Mancuso D.Manuzzi C.A.Manzari D.Marangotto J.F.Marchand U.Marconi S.Mariani C.Marin Benito J.Marks A.M.Marshall P.J.Marshall G.Martelli G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice J.Mauricio M.Mazurek M.McCann L.Mcconnell T.H.McGrath N.T.McHugh A.McNab R.McNulty J.V.Mead B.Meadows G.Meier D.Melnychuk S.Meloni M.Merk A.Merli L.Meyer Garcia D.Miao M.Mikhasenko D.A.Milanes E.Millard M.Milovanovic M.-N.Minard A.Minotti T.Miralles S.E.Mitchell B.Mitreska D.S.Mitzel A.Madden R.A.Mohammed R.D.Moise S.Mokhnenko T.Mombacher M.Monk I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu E.Muhammad F.Muheim M.Mulder K.Müller C.H.Murphy D.Murray R.Murta P.Muzzetto P.Naik T.Nakada R.Nandakumar T.Nanut I.Nasteva M.Needham N.Neri S.Neubert N.Neufeld P.Neustroev R.Newcombe J.Nicolini E.M.Niel S.Nieswand N.Nikitin N.S.Nolte C.Normand J.Novoa Fernandez C.Nunez A.Oblakowska-Mucha V.Obraztsov T.Oeser D.P.O'Hanlon S.Okamura R.Oldeman F.Oliva C.J.G.Onderwater R.H.O'Neil J.M.Otalora Goicochea T.Ovsiannikova P.Owen A.Oyanguren O.Ozcelik K.O.Padeken B.Pagare P.R.Pais T.Pajero A.Palano M.Palutan Y.Pan G.Panshin L.Paolucci A.Papanestis M.Pappagallo L.L.Pappalardo C.Pappenheimer W.Parker C.Parkes B.Passalacqua G.Passaleva A.Pastore M.Patel C.Patrignani C.J.Pawley A.Pearce A.Pellegrino M.Pepe Altarelli S.Perazzini D.Pereima A.Pereiro Castro P.Perret M.Petric K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo H.Pham A.Philippov R.Piandani L.Pica M.Piccini B.Pietrzyk G.Pietrzyk M.Pili D.Pinci F.Pisani M.Pizzichemi V.Placinta J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo S.Ponce D.Popov S.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch V.Puill G.Punzi H.R.Qi W.Qian N.Qin S.Qu R.Quagliani N.V.Raab R.I.Rabadan Trejo B.Rachwal J.H.Rademacker R.Rajagopalan M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Rebollo De Miguel F.Redi J.Reich F.Reiss C.Remon Alepuz Z.Ren P.K.Resmi R.Ribatti A.M.Ricci S.Ricciardi K.Richardson M.Richardson-Slipper K.Rinnert P.Robbe G.Robertson A.B.Rodrigues E.Rodrigues E.Rodriguez Fernandez J.A.Rodriguez Lopez E.Rodriguez Rodriguez D.L.Rolf A.Rollings P.Roloff V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf R.A.Ruiz Fernandez J.Ruiz Vidal A.Ryzhikov J.Ryzka J.J.Saborido Silva N.Sagidova N.Sahoo B.Saitta M.Salomoni C.Sanchez Gras I.Sanderswood R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti D.Saranin G.Sarpis M.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina H.Sazak L.G.Scantlebury Smead A.Scarabotto S.Schael S.Scherl M.Schiller H.Schindler M.Schmelling B.Schmidt S.Schmitt O.Schneider A.Schopper M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciuccati S.Sellam A.Semennikov M.Senghi Soares A.Sergi N.Serra L.Sestini A.Seuthe Y.Shang D.M.Shangase M.Shapkin I.Shchemerov L.Shchutska T.Shears L.Shekhtman Z.Shen S.Sheng V.Shevchenko B.Shi E.B.Shields Y.Shimizu E.Shmanin R.Shorkin J.D.Shupperd B.G.Siddi R.Silva Coutinho G.Simi S.Simone M.Singla N.Skidmore R.Skuza T.Skwarnicki M.W.Slater J.C.Smallwood J.G.Smeaton E.Smith K.Smith M.Smith A.Snoch L.Soares Lavra M.D.Sokoloff F.J.P.Soler A.Solomin A.Solovev I.Solovyev R.Song F.L.Souza De Almeida B.Souza De Paula B.Spaan E.Spadaro Norella E.Spedicato E.Spiridenkov P.Spradlin V.Sriskaran F.Stagni M.Stahl S.Stahl S.Stanislaus E.N.Stein O.Steinkamp O.Stenyakin H.Stevens S.Stone D.Strekalina Y.S Su F.Suljik J.Sun L.Sun Y.Sun P.Svihra P.N.Swallow K.Swientek A.Szabelski T.Szumlak M.Szymanski Y.Tan S.Taneja M.D.Tat A.Terentev F.Teubert E.Thomas D.J.D.Thompson K.A.Thomson H.Tilquin V.Tisserand S.T'Jampens M.Tobin L.Tomassetti G.Tonani X.Tong D.Torres Machado D.Y.Tou S.M.Trilov C.Trippl G.Tuci A.Tully N.Tuning A.Ukleja D.J.Unverzagt A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti N.Valls Canudas M.van Beuzekom M.Van Dijk H.Van Hecke E.van Herwijnen C.B.Van Hulse M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vázquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Veronesi M.Vesterinen D.Vieira M.Vieites Diaz X.Vilasis-Cardona E.Vilella Figueras A.Villa P.Vincent F.C.Volle D.vom Bruch A.Vorobyev V.Vorobyev N.Voropaev K.Vos C.Vrahas R.Waldi J.Walsh G.Wan C.Wang G.Wang J.Wang J.Wang J.Wang J.Wang M.Wang R.Wang X.Wang Y.Wang Z.Wang Z.Wang Z.Wang J.A.Ward N.K.Watson D.Websdale Y.Wei C.Weisser B.D.C.Westhenry D.J.White M.Whitehead A.R.Wiederhold D.Wiedner G.Wilkinson M.K.Wilkinson I.Williams M.Williams M.R.J.Williams R.Williams F.F.Wilson W.Wislicki M.Witek L.Witola C.P.Wong G.Wormser S.A.Wotton H.Wu j.wu K.Wyllie Z.Xiang D.Xiao Y.Xie A.Xu J.Xu L.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Xu D.Yang S.Yang X.Yang Y.Yang Z.Yang Z.Yang L.E.Yeomans V.Yeroshenko H.Yeung H.Yin J.Yu X.Yuan E.Zaffaroni M.Zavertyaev M.Zdybal O.Zenaiev M.Zeng C.Zhang D.Zhang L.Zhang S.Zhang S.Zhang Y.Zhang Y.Zhang A.Zharkova A.Zhelezov Y.Zheng T.Zhou X.Zhou Y.Zhou V.Zhovkovska X.Zhu X.Zhu Z.Zhu V.Zhukov Q.Zou S.Zucchelli D.Zuliani G.Zunica LHCb Collaboration 《Chinese Physics C》 SCIE CAS CSCD 2023年第9期14-26,共13页
A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity... A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit. 展开更多
关键词 W/Z boson rare decay upper limit of branching fraction
原文传递
Development of Lattice Boltzmann Flux Solver for Simulation of Incompressible Flows 被引量:4
9
作者 C.Shu Y.Wang +1 位作者 C.J.Teo j.wu 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第4期436-460,共25页
A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navie... A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navier-Stokes(N-S)equations and lattice Boltzmann equation(LBE).The macroscopic differential equations are discretized by the finite volume method,where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers.The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh,tie-up of mesh spacing and time interval,limitation to viscous flows.LBFS is validated by its application to simulate the viscous decaying vortex flow,the driven cavity flow,the viscous flow past a circular cylinder,and the inviscid flow past a circular cylinder.The obtained numerical results compare very well with available data in the literature,which show that LBFS has the second order of accuracy in space,and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary. 展开更多
关键词 Chapman-Enskog analysis flux solver incompressible flow Navier-Stokes equation lattice Boltzmann equation
原文传递
A Hybrid Lattice Boltzmann Flux Solver for Simulation of Viscous Compressible Flows 被引量:3
10
作者 L.M.Yang C.Shu j.wu 《Advances in Applied Mathematics and Mechanics》 SCIE 2016年第6期887-910,共24页
In this paper,a hybrid lattice Boltzmann flux solver(LBFS)is proposed for simulation of viscous compressible flows.In the solver,the finite volume method is applied to solve the Navier-Stokes equations.Different from ... In this paper,a hybrid lattice Boltzmann flux solver(LBFS)is proposed for simulation of viscous compressible flows.In the solver,the finite volume method is applied to solve the Navier-Stokes equations.Different from conventional Navier-Stokes solvers,in this work,the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model,while the viscous flux is still approximated by conventional smooth function approximation.The present work overcomes the two major drawbacks of existing LBFS[28–31],which is used for simulation of inviscid flows.The first one is its ability to simulate viscous flows by including evaluation of viscous flux.The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux,which takes a value close to zero in the boundary layer and one around the strong shock wave.Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows. 展开更多
关键词 Lattice Boltzmann flux solver HYBRID 1D lattice Boltzmann model switch function
原文传递
Development and Comparative Studies of Three Non-free Parameter Lattice Boltzmann Models for Simulation of Compressible Flows 被引量:3
11
作者 L.M.Yang C.Shu j.wu 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第4期454-472,共19页
This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is... This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model,while the tangential flux is calculated using the same way as used in the conventional Euler solvers.The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM.The platform is formed from the conservation forms of moments.Under the platform,both the equilibrium distribution functions and lattice velocities can be determined,and therefore,non-free parameter model can be developed.The paper particularly presents three typical non-free parameter models,D1Q3,D1Q4 and D1Q5.The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems.Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number.From the results,it seems that D1Q4 model could be the best choice for the FVLBM simulation of hypersonic flows. 展开更多
关键词 FV-LBM non-free parameter models compressible inviscid flows
原文传递
Particulate Flow Simulation via a Boundary Condition-Enforced Immersed Boundary-Lattice Boltzmann Scheme 被引量:2
12
作者 j.wu C.Shu 《Communications in Computational Physics》 SCIE 2010年第4期793-812,共20页
A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete se... A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete set of force densityto represent the effect of boundary. In the conventional IB-LBM, such force density ispre-determined, which cannot guarantee exact satisfaction of non-slip boundary condition. In this study, the force density is transferred to the unknown velocity correctionwhich is determined by enforcing the non-slip boundary condition. For the particulateflows, accurate calculation of hydrodynamic force exerted on the boundary of particlesis of great importance as it controls the motion of particles. The capability of presentmethod for particulate flows is depicted by simulating migration of one particle in asimple shear flow and sedimentation of one particle in a box and two particles in achannel. The expected phenomena and numerical results are achieved. In addition,particle suspension in a 2D symmetric stenotic artery is also simulated. 展开更多
关键词 Lattice Boltzmann method immersed boundary method non-slip boundary condition particulate flow TWO-DIMENSIONAL
原文传递
Optical and magnetic properties of GaN epilayers implanted with ytterbium 被引量:2
13
作者 W.M.Jadwisienczak J.Wang +4 位作者 H.Tanaka j.wu R.Palai H.Huhtinen A.Anders 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第6期931-935,共5页
We have studied the optical and magnetic properties of ytterbium implanted GaN epilayer grown on (0001) sapphire by metalorganic chemical vapor by deposition (MOCVD). Samples were implanted at room temperature with Yb... We have studied the optical and magnetic properties of ytterbium implanted GaN epilayer grown on (0001) sapphire by metalorganic chemical vapor by deposition (MOCVD). Samples were implanted at room temperature with Yb ions at dose 4 1015 cm-2 and energy of 150 keV. The implanted samples were annealed at 1000 C in N2 at atmospheric pressure to recover implantation damages. The photoluminescence (PL), PL excitation (PLE), and PL kinetics have been studied with continuous and pulse photo-excitations in 360-1100 nm spectral range at different temperatures. The characteristic Yb3+ ion emission spectra were observed in the spectral range between 970-1050 nm. Theoretical fittings of the experimental PL temperature and PL kinetics data suggest that Yb3+ ions are involved in at least two major luminescence centers. The PLE spectra indicate that excitation of the Yb3+ ion occurs via electron-hole pair generation and complex processes. Magnetization versus magnetic field curves shows an enhancement of magnetic order for Yb-implanted samples in 5 K to 300 K temperature range. The Yb-implanted GaN sample showing weak ferromagnetic behavior was compared with the ferromagnetic in situ doped GaYbN material. 展开更多
关键词 luminescence Ⅲ-nitrides rare earth ions defects ferromagnetism rare earths
原文传递
A Boundary Condition-Implemented Immersed Boundary-Lattice Boltzmann Method and Its Application for Simulation of Flows Around a Circular Cylinder
14
作者 X.Wang C.Shu +1 位作者 j.wu L.M.Yang 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第6期811-829,共19页
A boundary condition-implemented immersed boundary-lattice Boltzmann method(IB-LBM)is presented in this work.The present approach is an improvement to the conventional IB-LBM.In the conventional IB-LBM,the no-slip bou... A boundary condition-implemented immersed boundary-lattice Boltzmann method(IB-LBM)is presented in this work.The present approach is an improvement to the conventional IB-LBM.In the conventional IB-LBM,the no-slip boundary condition is only approximately satisfied.As a result,there is flow penetration to the solid boundary.Another drawback of conventional IB-LBM is the use of Dirac delta function interpolation,which only has the first order of accuracy.In this work,the no-slip boundary condition is directly implemented,and used to correct the velocity at two adjacent mesh points from both sides of the boundary point.The velocity correction is made through the second-order polynomial interpolation rather than the first-order delta function interpolation.Obviously,the two drawbacks of conventional IB-LBM are removed in the present study.Another important contribution of this paper is to present a simple way to compute the hydrodynamic forces on the boundary from Newton’s second law.To validate the proposed method,the two-dimensional vortex decaying problem and incompressible flow over a circular cylinder are simulated.As shown in the present results,the flow penetration problem is eliminated,and the obtained results compare very well with available data in the literature. 展开更多
关键词 Immersed boundary method lattice Boltzmann method velocity correction Lagrange interpolation no-slip boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部