There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = ...There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism, the equality NFn(f) = NJDn(f) holds for all n →← all eigenvalues of a quotient cohomology homomorphism induced by f have moduli ≤ 1.展开更多
基金supported by the National Science Center,Poland(Grant No.UMO2014/15/B/ST1/01710)
文摘There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M →4 M of a compact smooth manifold of dimension at least 3: NFn(f) = min{#Fix(gn);g - f; g continuous} and NJDn(f) = min{#Fix(gn);g - f; g smooth}. In general, NJDn(f) may be much greater than NFn(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism, the equality NFn(f) = NJDn(f) holds for all n →← all eigenvalues of a quotient cohomology homomorphism induced by f have moduli ≤ 1.