This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiat...This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiated-noise data, which has been collected from actual ships on the sea, effectively recognizable features are extracted. Such features include line-spectrum features, stationary and nonstationary spectrum features as well as rhythm features. Finally the categorization are tested by unknown samples on the sea, including 33 surface vessels, 8 underwater vessels in 30 operating conditions. Methods for memorization and classilication are also explored in the project. Paper (Ⅲ) is the thirird in the series. It deals with the extraction method of modulation information in double-frequency power spectrum and the establishment of pattern plate of double-frequency spectrum as well as average power spectrum. To extract features from double-frequency spectrum, the tendency of wave is subtracted from the wave of each channel and the modulation of high frequency is compensated. The modulation degree of lines is shown by relative Value and converted to fuzzy value by fuzzy function. The pattern-plate of double-frequency spectrum memorises stable line and its respective modulation strength. The pattern-plate of average power spectrum memorizes the spectra mean of typical samples and the standard variance展开更多
文摘This series of papers deal with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. Based on the studies of a large amount of ship radiated-noise data, which has been collected from actual ships on the sea, effectively recognizable features are extracted. Such features include line-spectrum features, stationary and nonstationary spectrum features as well as rhythm features. Finally the categorization are tested by unknown samples on the sea, including 33 surface vessels, 8 underwater vessels in 30 operating conditions. Methods for memorization and classilication are also explored in the project. Paper (Ⅲ) is the thirird in the series. It deals with the extraction method of modulation information in double-frequency power spectrum and the establishment of pattern plate of double-frequency spectrum as well as average power spectrum. To extract features from double-frequency spectrum, the tendency of wave is subtracted from the wave of each channel and the modulation of high frequency is compensated. The modulation degree of lines is shown by relative Value and converted to fuzzy value by fuzzy function. The pattern-plate of double-frequency spectrum memorises stable line and its respective modulation strength. The pattern-plate of average power spectrum memorizes the spectra mean of typical samples and the standard variance