为实现对稻田土壤砷(As)、镉(Cd)污染的同步移除,利用根箱试验,选取代表性杂交稻(HR)和常规稻(CR)品种作为修复材料进行提取.为了评估种植HR和CR对土壤As、Cd的提取效果,以未种植水稻土壤作为对照(CK),利用孔隙水采集器在其全生育期内...为实现对稻田土壤砷(As)、镉(Cd)污染的同步移除,利用根箱试验,选取代表性杂交稻(HR)和常规稻(CR)品种作为修复材料进行提取.为了评估种植HR和CR对土壤As、Cd的提取效果,以未种植水稻土壤作为对照(CK),利用孔隙水采集器在其全生育期内采集并监测土壤水溶态As、Cd浓度的变化;分别在水稻分蘖期、成熟期采用梯度扩散薄膜技术(diffusive gradients in thin-films,DGT)原位实时测定根际土壤剖面有效态As、Cd浓度;收获时利用分级提取法分析土壤As、Cd赋存形态及总量变化,并分析植株各部位的As、Cd累积量.结果表明:水稻生长能够有效消耗土壤中生物有效态As、Cd,且HR较CR表现出更高效的As、Cd同步富集能力.水稻成熟期,种植HR的土壤中DGT-As(扩散梯度薄膜提取态As)浓度较种植CR和CK处理分别下降69%和71%,DGT-Cd(扩散梯度薄膜提取态Cd)浓度分别降低35%和58%;HR和CR收获后土壤总As含量分别减少8%和1%,总Cd含量分别减少31%和14%;HR对土壤As、Cd的单株去除量分别为CR的1.2和4.5倍;每年种植两季HR对土壤As、Cd的移除率分别为CR的1.2和4.3倍.研究显示,种植HR对As、Cd具有更高效的提取能力,可优先作为修复材料对稻田土壤生物有效态As、Cd进行专性提取减量,为As、Cd复合污染稻田土壤清洁提供了一条有益路径;但还需结合水分优化管理、施加促溶剂等方式形成修复链,进一步提高修复效率,缩短修复年限.展开更多
A field experiment of organic manure, passivator and their complex was conducted to study the soil Cd bioavailability in the Cd polluted paddy soil. The results showed that the rice yield increased with the applicatio...A field experiment of organic manure, passivator and their complex was conducted to study the soil Cd bioavailability in the Cd polluted paddy soil. The results showed that the rice yield increased with the applications of organic manure, passivator and their complex, especially, the rice yields of applying 3 000 and 6 000 kg/hm^2 of organic manure increased significantly by 18.6% ( P 〈0.05) and 20.9% (P 〈0.05) because of the increase of rice economic coefficient. There had no significant change of the soil pH values and the soil available Cd contents, but the Cd distribution ratios in rice were lowered by applying organic manure, and the Cd contents of rice applying 3 000 and 6 005 kg/hm^2 of organic manure dropped by 14.3% ( P 〉 0.05) and 21.4% ( P 〉 0.05) compared with chemical fertilizer treatment, respectively. But applying with passivator and passivator fertilized with 3 000 and 6 000 kg/hm^2 of organic manure, the soil pH values increased and the soil available Cd contents decreased significantly, so that to restrain the rice's Cd absorption and accumulation. The rice Cd contents lowered by 28.6% ( P 〈 0.05), 28.6% ( P 〈 0.05) and 42.9% ( P 〈 0.05), the stem C,d contents lowered by 8.9% ( P 〉 0.05), 29.7% ( P 〈 0.05) and 43.6% ( P 〈 0.05), and the leaf Cd contents decreased by 18.8% ( P 〈 0.05), 25.0% ( P 〈 0.05) and 25.0% ( P 〈 0.05), respectively. It enhanced the inactivate effect of passivator significantly when fertilized with organic manure.展开更多
A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experim...A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experiment was conducted to explore the potentially physiological function of Cd in CA and the accumulation and tolerance of Cd in the Zn/Cd hyperaccumulator Picris divaricata Vant. P. divaricata was exposed to nutrient solutions with six Cd concentrations(0, 5, 10, 25, 50 and 75 μmol L^(-1)). After 12 d, plants were harvested for the analysis of plant biomass, Cd concentration and CA activity. The Cd concentrations in plant increased with the increasing Cd in nutrient solution, reaching 640 and 3 100 mg kg^(-1) in shoot and root, respectively, at the 75 μmol L^(-1) Cd treatment. Meanwhile, plant growth was enhanced by the Cd treatments at 5–25 μmol L^(-1), but it was significantly inhibited when the plants were exposed to solutions with higher Cd concerntrations(50 and 75 μmol L^(-1)). Exposure to Cd significantly increased the CA activity in P. divaricata, which reached a maximum value of 21.27 U mg^(-1) proteins at the 25 μmol L^(-1)Cd treatment, and the CA activity and shoot Cd concentration were positively correlated at solutions Cd of ≤ 25 μmol L^(-1). Moreover, two protein bands appeared on the denatured gel electrophoresis of purified CA, indicating that P. divaricata may have CA isomers with their respective molecular weights at around 60 and 55 k Da, at least one of which is Cd-bound. In addition, trace amounts of Cd in purified CA significantly increased with the supplied Cd concentration in nutrient solution(5–25 μmol L^(-1)). The results suggested that Cd may play a biological role by enhancing the activities and forming the active Cd-specific CA in the hyperaccumulator P. divaricata.展开更多
文摘为实现对稻田土壤砷(As)、镉(Cd)污染的同步移除,利用根箱试验,选取代表性杂交稻(HR)和常规稻(CR)品种作为修复材料进行提取.为了评估种植HR和CR对土壤As、Cd的提取效果,以未种植水稻土壤作为对照(CK),利用孔隙水采集器在其全生育期内采集并监测土壤水溶态As、Cd浓度的变化;分别在水稻分蘖期、成熟期采用梯度扩散薄膜技术(diffusive gradients in thin-films,DGT)原位实时测定根际土壤剖面有效态As、Cd浓度;收获时利用分级提取法分析土壤As、Cd赋存形态及总量变化,并分析植株各部位的As、Cd累积量.结果表明:水稻生长能够有效消耗土壤中生物有效态As、Cd,且HR较CR表现出更高效的As、Cd同步富集能力.水稻成熟期,种植HR的土壤中DGT-As(扩散梯度薄膜提取态As)浓度较种植CR和CK处理分别下降69%和71%,DGT-Cd(扩散梯度薄膜提取态Cd)浓度分别降低35%和58%;HR和CR收获后土壤总As含量分别减少8%和1%,总Cd含量分别减少31%和14%;HR对土壤As、Cd的单株去除量分别为CR的1.2和4.5倍;每年种植两季HR对土壤As、Cd的移除率分别为CR的1.2和4.3倍.研究显示,种植HR对As、Cd具有更高效的提取能力,可优先作为修复材料对稻田土壤生物有效态As、Cd进行专性提取减量,为As、Cd复合污染稻田土壤清洁提供了一条有益路径;但还需结合水分优化管理、施加促溶剂等方式形成修复链,进一步提高修复效率,缩短修复年限.
基金Supported by National Science and Technology Support Plan Project,China(2012BAD14B17-1)Key and Special Project of Hunan Province Science and Technology,China(2011FJ1002-3)
文摘A field experiment of organic manure, passivator and their complex was conducted to study the soil Cd bioavailability in the Cd polluted paddy soil. The results showed that the rice yield increased with the applications of organic manure, passivator and their complex, especially, the rice yields of applying 3 000 and 6 000 kg/hm^2 of organic manure increased significantly by 18.6% ( P 〈0.05) and 20.9% (P 〈0.05) because of the increase of rice economic coefficient. There had no significant change of the soil pH values and the soil available Cd contents, but the Cd distribution ratios in rice were lowered by applying organic manure, and the Cd contents of rice applying 3 000 and 6 005 kg/hm^2 of organic manure dropped by 14.3% ( P 〉 0.05) and 21.4% ( P 〉 0.05) compared with chemical fertilizer treatment, respectively. But applying with passivator and passivator fertilized with 3 000 and 6 000 kg/hm^2 of organic manure, the soil pH values increased and the soil available Cd contents decreased significantly, so that to restrain the rice's Cd absorption and accumulation. The rice Cd contents lowered by 28.6% ( P 〈 0.05), 28.6% ( P 〈 0.05) and 42.9% ( P 〈 0.05), the stem C,d contents lowered by 8.9% ( P 〉 0.05), 29.7% ( P 〈 0.05) and 43.6% ( P 〈 0.05), and the leaf Cd contents decreased by 18.8% ( P 〈 0.05), 25.0% ( P 〈 0.05) and 25.0% ( P 〈 0.05), respectively. It enhanced the inactivate effect of passivator significantly when fertilized with organic manure.
基金supported by the Environmental Pollution Control and Remediation Technology Foundation of Guangdong Provincial Key Lab,China(No.2011K0002)
文摘A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experiment was conducted to explore the potentially physiological function of Cd in CA and the accumulation and tolerance of Cd in the Zn/Cd hyperaccumulator Picris divaricata Vant. P. divaricata was exposed to nutrient solutions with six Cd concentrations(0, 5, 10, 25, 50 and 75 μmol L^(-1)). After 12 d, plants were harvested for the analysis of plant biomass, Cd concentration and CA activity. The Cd concentrations in plant increased with the increasing Cd in nutrient solution, reaching 640 and 3 100 mg kg^(-1) in shoot and root, respectively, at the 75 μmol L^(-1) Cd treatment. Meanwhile, plant growth was enhanced by the Cd treatments at 5–25 μmol L^(-1), but it was significantly inhibited when the plants were exposed to solutions with higher Cd concerntrations(50 and 75 μmol L^(-1)). Exposure to Cd significantly increased the CA activity in P. divaricata, which reached a maximum value of 21.27 U mg^(-1) proteins at the 25 μmol L^(-1)Cd treatment, and the CA activity and shoot Cd concentration were positively correlated at solutions Cd of ≤ 25 μmol L^(-1). Moreover, two protein bands appeared on the denatured gel electrophoresis of purified CA, indicating that P. divaricata may have CA isomers with their respective molecular weights at around 60 and 55 k Da, at least one of which is Cd-bound. In addition, trace amounts of Cd in purified CA significantly increased with the supplied Cd concentration in nutrient solution(5–25 μmol L^(-1)). The results suggested that Cd may play a biological role by enhancing the activities and forming the active Cd-specific CA in the hyperaccumulator P. divaricata.