Fusarium sp. strain ZH-H2 is capable to degrade high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), smooth bromegrass (Bromus inermis Leyss.) can also degrade 4- to 6-ring PAHs. Pot experiments were...Fusarium sp. strain ZH-H2 is capable to degrade high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), smooth bromegrass (Bromus inermis Leyss.) can also degrade 4- to 6-ring PAHs. Pot experiments were conducted to investigate how bromegrass and different inoculum sizes of ZH-H2 clean up HMW-PAHs in agricultural soil derived from a coal mine area. The results showed that, compared with control, different sizes of inocula of ZH-H2 effectively degraded HMW-PAHs, with removal rates of 19.01, 34.25 and 29.26% for 4-, 5- and 6-ring PAHs in the treatment with 1.0 g kg-1ZH- H2 incubation after 90 d. After 5 mon of cultivation, bromegrass reached degradation rate of these compounds by 12.66, 36.26 and 36.24%, respectively. By adding strain ZH-H2 to bromegrass, HMW-PAHs degradation was further improved up to 4.24 times greater than bromegrass (W), in addition to the degradation rate of Bbf decrease. For removal rates of both 5- and 6-ring PAHs, addition of 0.5 g kg-1 Fusarium ZH-H2 to pots with bromegrass performed better than addition of 0.1 g kg-1, while the highest concentration of 1.0 g kg-1 Fusarium ZH-H2 did not further improve degradation. Degradation of4-ring PAHs showed no significant difference among different ZH-H2 incubations with bromegrass treatments. We found that the degradation rates of 4-, 5- and 6-ring PAHs in all treatments are significantly correlated in a positive, linear man- ner with activity of lignin peroxidase (LIP) (t=0.8065, 0.9350 and 0.9165, respectively), while degradation of 5- and 6-ring PAHs is correlated to polyphenoloxidase (PPO) activity (r=0.7577 and 07806). Our findings suggest that the combination of Fusarium sp. ZH-H2 and bromegrass offers a suitable alternative for phytoremediation of aged PAH-contaminated soil in coal mining areas, with a recommended inoculation size of 0.5 g Fusarium sp. ZH-H2 per kg soil.展开更多
基金supported by the National High-Tech R&D Program of China(863 Program)(2012AA101403)the Educational Commission of Hebei Province of China(Z2013058)+1 种基金the Human Resources Department of Hebei Province of China(2013–2016 Project)the Educational Commission of Hebei Province of China(ZD2013013)
文摘Fusarium sp. strain ZH-H2 is capable to degrade high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), smooth bromegrass (Bromus inermis Leyss.) can also degrade 4- to 6-ring PAHs. Pot experiments were conducted to investigate how bromegrass and different inoculum sizes of ZH-H2 clean up HMW-PAHs in agricultural soil derived from a coal mine area. The results showed that, compared with control, different sizes of inocula of ZH-H2 effectively degraded HMW-PAHs, with removal rates of 19.01, 34.25 and 29.26% for 4-, 5- and 6-ring PAHs in the treatment with 1.0 g kg-1ZH- H2 incubation after 90 d. After 5 mon of cultivation, bromegrass reached degradation rate of these compounds by 12.66, 36.26 and 36.24%, respectively. By adding strain ZH-H2 to bromegrass, HMW-PAHs degradation was further improved up to 4.24 times greater than bromegrass (W), in addition to the degradation rate of Bbf decrease. For removal rates of both 5- and 6-ring PAHs, addition of 0.5 g kg-1 Fusarium ZH-H2 to pots with bromegrass performed better than addition of 0.1 g kg-1, while the highest concentration of 1.0 g kg-1 Fusarium ZH-H2 did not further improve degradation. Degradation of4-ring PAHs showed no significant difference among different ZH-H2 incubations with bromegrass treatments. We found that the degradation rates of 4-, 5- and 6-ring PAHs in all treatments are significantly correlated in a positive, linear man- ner with activity of lignin peroxidase (LIP) (t=0.8065, 0.9350 and 0.9165, respectively), while degradation of 5- and 6-ring PAHs is correlated to polyphenoloxidase (PPO) activity (r=0.7577 and 07806). Our findings suggest that the combination of Fusarium sp. ZH-H2 and bromegrass offers a suitable alternative for phytoremediation of aged PAH-contaminated soil in coal mining areas, with a recommended inoculation size of 0.5 g Fusarium sp. ZH-H2 per kg soil.