Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical mi...Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical microscopy, high-resolution X-ray diffraction (HRXRD) and Raman scattering. As growth pressure rises from 100 mbar to 400 mbar, the surface gets rougher, and the in-plane XRD full width at half maximum (FWHM) along the c-axis [0001] increases while that along the m-axis [1100] decreases. Meanwhile, residential stresses are reduced along both the c-axis and the m-axis. The structural anisotropy feature under 400 mbar is inverted with respect to 100 mbar, and the weakened anisotropy is achieved under a moderate pressure of 200 mbar, probably due to the suppressed Ga atomic migration along the c-axis under a larger pressure. We propose that pressure can affect a-plane growth through the V/III ratio.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60890192 and 50872146)
文摘Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical microscopy, high-resolution X-ray diffraction (HRXRD) and Raman scattering. As growth pressure rises from 100 mbar to 400 mbar, the surface gets rougher, and the in-plane XRD full width at half maximum (FWHM) along the c-axis [0001] increases while that along the m-axis [1100] decreases. Meanwhile, residential stresses are reduced along both the c-axis and the m-axis. The structural anisotropy feature under 400 mbar is inverted with respect to 100 mbar, and the weakened anisotropy is achieved under a moderate pressure of 200 mbar, probably due to the suppressed Ga atomic migration along the c-axis under a larger pressure. We propose that pressure can affect a-plane growth through the V/III ratio.