[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the ...[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the approaches to solving the problem and improving crop production. [Method] Three major apple root stock species (Malus prunifolia, Malus sieversii and Malus baccata) were selected to evaluate their tolerance to iron defciency in hydroponic system. A 3×2 factorial pot experiment was conducted with three replicates in a greenhouse at Gansu Agricultural University, Lanzhou, China. [Result] The SOD, POD and CAT activities in roots and stems of the 3 root stock species in Fe-defcient Hoagland solution decreased, however Malus sieversii got the less reduction and had better root architecture and growth than the other species. The aboveground biomass, plant height, chlorophyll content, total root length and lateral root number were correlated positively with iron-defciency stress tolerance. The species’ tolerance to iron-defciency from high to low was M. sieversii’s〉M. baccata’s〉M. prunifolia’s. Moreover, the improvement of some morphological features such as root length, above-ground biomass, plant height and lateral root number in apple could be conducive to breeding cultivars with tolerance to iron-defciency stress. [Conclusion] Malus sieversii had better tolerance to iron-defciency stress than the others in this study.展开更多
[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of ap...[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of apple rootstocks under simulated drought condition induced by polyethylene glycol (PEG). [Method] Apple (Malus baccata) seedlings were employed as test material. There were five treatments (T1-5) designed as ABA application rates at 0 (T1), 25 (T2), 50 (T3), 75 (T4) and 100 (T5) μmol/L in the hydroponic experiments. The changes of the relative leaf water content (RLWC), root activity, malondialdehyde (MDA) content, proline (Pro) content, superoxide dismutase (SOD) activity and peroxidase (POD) activity were assayed under PEG stress. All indices were analyzed by principal component analysis (PCA) to evaluate the optimal ABA concentration alleviating drought stress. [Result] The different concentration of ABA could increase Pro content and antioxidant enzyme activities, relieve the descent of RLWC and decrease MDA content. Low levels of ABA increased root activity, whereas the high concentrations (T3-T5) inhibited it. Statistical analysis based on the PCA indicated that the cumulative contribution rate of the first two principal components was raised to 96.457%, and the PCA in the T2 scored the highest. [Conclusion] The exogenous ABA could decrease the damage caused by drought stress to Malus baccata seedlings and enhance the ability of drought tolerance by increasing osmolyte content, anti- oxidative enzyme activity and reducing the level of membrane lipid peroxidation. The optimal concentration of ABA was 25 μmol/L.展开更多
基金Supported by University Research Project of Education Dpartment(2018A-035)~~
文摘[Objective] Iron deficiency is one of the most important crop element deficiencies in the Loess Plateau of northwestern China. The selection for crop cultivars that are tolerant to low iron levels could be one of the approaches to solving the problem and improving crop production. [Method] Three major apple root stock species (Malus prunifolia, Malus sieversii and Malus baccata) were selected to evaluate their tolerance to iron defciency in hydroponic system. A 3×2 factorial pot experiment was conducted with three replicates in a greenhouse at Gansu Agricultural University, Lanzhou, China. [Result] The SOD, POD and CAT activities in roots and stems of the 3 root stock species in Fe-defcient Hoagland solution decreased, however Malus sieversii got the less reduction and had better root architecture and growth than the other species. The aboveground biomass, plant height, chlorophyll content, total root length and lateral root number were correlated positively with iron-defciency stress tolerance. The species’ tolerance to iron-defciency from high to low was M. sieversii’s〉M. baccata’s〉M. prunifolia’s. Moreover, the improvement of some morphological features such as root length, above-ground biomass, plant height and lateral root number in apple could be conducive to breeding cultivars with tolerance to iron-defciency stress. [Conclusion] Malus sieversii had better tolerance to iron-defciency stress than the others in this study.
文摘[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of apple rootstocks under simulated drought condition induced by polyethylene glycol (PEG). [Method] Apple (Malus baccata) seedlings were employed as test material. There were five treatments (T1-5) designed as ABA application rates at 0 (T1), 25 (T2), 50 (T3), 75 (T4) and 100 (T5) μmol/L in the hydroponic experiments. The changes of the relative leaf water content (RLWC), root activity, malondialdehyde (MDA) content, proline (Pro) content, superoxide dismutase (SOD) activity and peroxidase (POD) activity were assayed under PEG stress. All indices were analyzed by principal component analysis (PCA) to evaluate the optimal ABA concentration alleviating drought stress. [Result] The different concentration of ABA could increase Pro content and antioxidant enzyme activities, relieve the descent of RLWC and decrease MDA content. Low levels of ABA increased root activity, whereas the high concentrations (T3-T5) inhibited it. Statistical analysis based on the PCA indicated that the cumulative contribution rate of the first two principal components was raised to 96.457%, and the PCA in the T2 scored the highest. [Conclusion] The exogenous ABA could decrease the damage caused by drought stress to Malus baccata seedlings and enhance the ability of drought tolerance by increasing osmolyte content, anti- oxidative enzyme activity and reducing the level of membrane lipid peroxidation. The optimal concentration of ABA was 25 μmol/L.