在直流输电系统中,换流阀阀基电子VBE(valve base electronics)设备的稳定运作对维护直流系统安全至关重要。传统的阀基电子设备电路板(VBE板)元件失效检测方法依赖于耗时的人工检查或基于规则的自动化系统,这些方法通常检测效率低下且...在直流输电系统中,换流阀阀基电子VBE(valve base electronics)设备的稳定运作对维护直流系统安全至关重要。传统的阀基电子设备电路板(VBE板)元件失效检测方法依赖于耗时的人工检查或基于规则的自动化系统,这些方法通常检测效率低下且准确性有限。针对该问题,提出一种基于改进的SqueezeNet深度学习模型的VBE板元件失效区域识别方法。通过引入深度可分离卷积和残差连接,所提改进SqueezeNet模型旨在提高元件失效检测的准确性,同时降低计算资源的需求。在VBE板元件失效数据集上的实验结果表明,所提方法在元件失效检测准确率和运算效率方面均优于传统方法和标准SqueezeNet模型,准确率达到了95.27%,比原模型高出4.45%。不仅提升了VBE板元件失效检测的效率和准确性,而且为电力系统中类似设备的元件失效诊断提供了新的技术参考。展开更多
文摘在直流输电系统中,换流阀阀基电子VBE(valve base electronics)设备的稳定运作对维护直流系统安全至关重要。传统的阀基电子设备电路板(VBE板)元件失效检测方法依赖于耗时的人工检查或基于规则的自动化系统,这些方法通常检测效率低下且准确性有限。针对该问题,提出一种基于改进的SqueezeNet深度学习模型的VBE板元件失效区域识别方法。通过引入深度可分离卷积和残差连接,所提改进SqueezeNet模型旨在提高元件失效检测的准确性,同时降低计算资源的需求。在VBE板元件失效数据集上的实验结果表明,所提方法在元件失效检测准确率和运算效率方面均优于传统方法和标准SqueezeNet模型,准确率达到了95.27%,比原模型高出4.45%。不仅提升了VBE板元件失效检测的效率和准确性,而且为电力系统中类似设备的元件失效诊断提供了新的技术参考。