Graphdiyne,as the novel carbon allotrope,which is composed of sp^(2)-and sp-hybridized carbon,has exhibited excellent catalytic activity and conductivity.It has been applied in series of fields,such as Li-battery,cata...Graphdiyne,as the novel carbon allotrope,which is composed of sp^(2)-and sp-hybridized carbon,has exhibited excellent catalytic activity and conductivity.It has been applied in series of fields,such as Li-battery,catalyst and energy conversion.Expanding well-defined structures and useful applications of graphdiyne is still full of challenges in material chemistry.Herein,we optimized the synthesis condition of pyrenylgraphdiyne to obtain the nanowall structure.Compared with the typical nanosheet structure,the pyrenyl-graphdiyne nanowalls(Pyr-GDY-NWs)have more area for lithium insertion.Lithium-ion battery featuring Pyr-GDY-NWs-based electrode exhibits a high reversible specific capacity up to 1464 mA·h/g,which is triple than that of the commercial graphite.We also used the theoretical calculation to investigate the mechanism of Li storage in Pyr-GDY-NWs.The experiment and theoretical data showed that Pyr-GDY-NWs had the potential application in lithium batteries.Therefore,Pyr-GDY with a defined structure would be applied in energy storage and energy conversion.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.21801014,2185299).
文摘Graphdiyne,as the novel carbon allotrope,which is composed of sp^(2)-and sp-hybridized carbon,has exhibited excellent catalytic activity and conductivity.It has been applied in series of fields,such as Li-battery,catalyst and energy conversion.Expanding well-defined structures and useful applications of graphdiyne is still full of challenges in material chemistry.Herein,we optimized the synthesis condition of pyrenylgraphdiyne to obtain the nanowall structure.Compared with the typical nanosheet structure,the pyrenyl-graphdiyne nanowalls(Pyr-GDY-NWs)have more area for lithium insertion.Lithium-ion battery featuring Pyr-GDY-NWs-based electrode exhibits a high reversible specific capacity up to 1464 mA·h/g,which is triple than that of the commercial graphite.We also used the theoretical calculation to investigate the mechanism of Li storage in Pyr-GDY-NWs.The experiment and theoretical data showed that Pyr-GDY-NWs had the potential application in lithium batteries.Therefore,Pyr-GDY with a defined structure would be applied in energy storage and energy conversion.