期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
表面增强拉曼光谱原位捕获Pt-NiO界面水煤气变换反应中的碳酸盐中间物种
1
作者 覃思纳 魏笛野 +6 位作者 魏杰 林嘉盛 陈清奇 吴元菲 金怀洲 张华 李剑锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2010-2016,共7页
水煤气变换反应(WGSR)是制备高纯氢的重要反应之一,一直是人们的研究热点.以Pt为代表的贵金属催化剂,在低温条件下表现出优异的WGSR活性.其中,Pt可还原性氧化物界面往往被认为是水煤气变换反应最高效的活性位点.然而,由于缺乏直接的光... 水煤气变换反应(WGSR)是制备高纯氢的重要反应之一,一直是人们的研究热点.以Pt为代表的贵金属催化剂,在低温条件下表现出优异的WGSR活性.其中,Pt可还原性氧化物界面往往被认为是水煤气变换反应最高效的活性位点.然而,由于缺乏直接的光谱证据,该界面处的水煤气变换反应分子机理仍然存在争议.本文通过制备具有三元核壳结构的Au@Pt@NiO纳米结构,在具有高表面增强拉曼效应的Au纳米颗粒表面构建了丰富的Pt-NiO界面,成功实现了Pt-NiO界面处WGSR过程及其关键中间物种的原位表面增强拉曼光谱(SERS)研究.通过控制镍前驱体的量,结合透射电镜和元素面扫描表征,制备了一系列具有不同NiO壳层厚度的Au@Pt@NiO纳米结构.以CO作为探针分子,利用原位SERS表征,当镍前驱体添加量为0.05 mL时,可以同时得到Pt-C以及Ni-O的拉曼信号,说明此时NiO是以岛状形式沉积于Au@Pt表面,从而构筑出丰富的Pt-NiO界面.原位SERS测试结果表明,当将此Au@Pt@NiO纳米粒子置于WGSR气氛时,随着反应温度的升高,在1065 cm^(-1)处出现了碳酸根物种的拉曼信号.而当将Au@Pt@NiO纳米粒子置于单独Ar,CO和气态水的气氛条件下时,均未观察到与新物种相关的拉曼信号产生.进一步研究结果表明,碳酸根物种的拉曼信号强度随着反应温度的上升呈现先增加后减少的趋势,且在130 ℃便已出现(此时并未测到WGSR活性),并在200 ℃显示出最大值(WGSR的起燃温度).同时,在气氛切换实验结果表明,若体系中先通入CO/Ar,再切换成H_(2)O/Ar时,可在Au@Pt@NiO表面观察到碳酸盐物种的生成;反之,若先通入H_(2)O/Ar,再切换为CO/Ar时,则无碳酸盐物种.说明碳酸盐物种是通过吸附的CO与气态水反应生成的,并且在催化剂表面可以稳定吸附,需要在更高温度才可分解,故碳酸盐的分解可能是WGSR中一个较为缓慢的步骤.此外,当将Au@Pt和Au@NiO置于WGSR气氛条件下进行对照实验,并没有观察到碳酸盐物种生成.这表明Pt-NiO界面可促进碳酸盐中间物种的形成,从而导致该界面比纯Pt表面具有更高的水煤气变换反应活性.本文研究结果加深了对WGSR机理的认识,有望用于指导高效WGSR催化剂的设计. 展开更多
关键词 水煤气变换反应 表面增强拉曼光谱 核壳纳米结构 原位表征 碳酸盐中间物种
下载PDF
In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy
2
作者 Xiu-Mei lin Chong Han +6 位作者 Xin-Tao Yang jia-sheng lin Wei-Qiang Yang Hong-Xu Guo Yao-Hui Wang Jin-Chao Dong Jian-Feng Li 《Nano Research》 SCIE EI CSCD 2024年第1期245-252,共8页
Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2... Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2)C_(8)H_(4)O_(4),Na_(2)TP),an organic salt with a theoretical capacity of 255 mAh·g^(-1),is electroactive towards both lithium and sodium.However,its electrochemical energy storage(EES)process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate.Herein,in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP.The appearance and then disappearance of the–COOLi Raman band at 1625 cm^(-1) during the de/lithiation,and the increase and then decrease of the–COONa Raman band at 1615 cm^(-1) during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+or 2Na+transfer mechanism.We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries(SIBs)than lithium-ion batteries(LIBs)could be due to the larger ion radium of Na+than Li+,which results in larger steric resistance and polarization during EES.The Na2TP,therefore,shows greater changes in spectra during de/sodiation than de/lithiation.We expect that our findings could provide a reference for the rational design of organic compounds for EES. 展开更多
关键词 disodium terephthalate(Na_(2)C_(8)H_(4)O_(4) Na2TP) in situ Raman spectroscopy de/lithiation de/sodiation mechanisms
原文传递
In situ Raman,FTIR,and XRD spectroscopic studies in fuel cells and rechargeable batteries 被引量:2
3
作者 Fan Gao Xiang-Dong Tian +3 位作者 jia-sheng lin Jin-Chao Dong Xiu-Mei lin Jian-Feng Li 《Nano Research》 SCIE EI CSCD 2023年第4期4855-4866,共12页
As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in ... As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance,which mainly rely on the rational design of catalysts,electrode materials,and electrode/electrolyte interfaces in EESC,based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions.Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques,such as in situ Raman,Fourier transform infrared(FTIR),and X-ray diffraction(XRD)spectroscopy.These techniques can provide characteristic spectroscopic information of molecules and/or crystals,which are sensitive to structure/phase changes resulted from different electrochemical working conditions,hence allowing for intermediates identification and mechanisms understanding.This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman,FTIR,and XRD spectroscopy.The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction(ORR)in fuel cells,on representative high capacity and/or resource abundance cathodes and anodes,and on the solid electrolyte interface(SEI)in rechargeable batteries are discussed.We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research. 展开更多
关键词 in situ spectroscopy RAMAN Fourier transform infrared spectroscopy(FTIR) X-ray diffraction(XRD) fuel cells rechargeable batteries
原文传递
Plasmonic photocatalysis:Mechanism,applications and perspectives
4
作者 Tian Wang Hong-Jia Wang +6 位作者 jia-sheng lin Jing-Liang Yang Fan-Li Zhang Xiu-Mei lin Yue-Jiao Zhang Shangzhong Jin Jian-Feng Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第9期57-70,共14页
The process of photocatalysis,regarded as a promising approach for tackling the energy crisis and environmental pollution issues,is crucial for turning solar light into chemical resources.However,the solar-chemical co... The process of photocatalysis,regarded as a promising approach for tackling the energy crisis and environmental pollution issues,is crucial for turning solar light into chemical resources.However,the solar-chemical conversion efficiency of typical semiconductor catalysts is still too low,so it is vital to figure out how to boost photocatalytic performance of semiconductors.Under visible light illumination,the local surface plasmon resonance(LSPR)induced by coinage metal would enhance the local electric field and improve photocatalytic performance of semiconductors,especially in the visible range.Therefore,its attachment to semiconductors has been regarded as an efficient strategy to improve photocatalytic performance.This paper reviews the latest research progress of plasmonic photocatalysis from theory to application.Starting from the excitation and relaxation of plasmons,four main mechanisms of plasmon-enhanced semiconductor photocatalysis are introduced,including enhanced light absorption and scattering,local electromagnetic field enhancement,improved hot carriers(HCs)injection and enhanced thermal effect.Secondly,the current mainstream plasmonic photocatalysts,such as monometallic,bimetallic and non-noble metal-based plasmonic catalysts,are reviewed.Finally,the applications of plasmonic photocatalysts in H_(2) production,CO_(2) reduction,and antibacterial are further summarized. 展开更多
关键词 PLASMONIC NANOSTRUCTURES PHOTOCATALYST Electromagnetic field LSPR
原文传递
Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution 被引量:1
5
作者 BAO-YING WEN JING-YU WANG +10 位作者 TAI-LONG SHEN ZHEN-WEI ZHU PENG-CHENG GUAN jia-sheng lin WEI PENG WEI-WEI CAI HUAIZHOU JIN QING-CHI XU ZHI-lin YANG ZHONG-QUN TIAN JIAN-FENG LI 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第9期2107-2114,共8页
The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter intera... The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter interactions at~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities.Moreover,we observed the significant photoluminescence(PL)enhancement factor reaching up to 2800 times,which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities.Meanwhile,the theoretical calculations are well reproduced and support the experimental results. 展开更多
关键词 RESOLUTION LIGHT PLASMON
原文传递
Plasmonic Core−Shell Materials:Synthesis,SpectroscopicCharacterization,and Photocatalytic Applications 被引量:1
6
作者 Hong-Jia Wang jia-sheng lin +2 位作者 Hua Zhang Yue-Jiao Zhang Jian-Feng Li 《Accounts of Materials Research》 2022年第2期187-198,共12页
CONSPECTUS:The ability to concentrate light at the nanoscale and produce extremely high local electromagnetic(EM)fields makes plasmonics a promising and rapidly developing research area.In the region with high EM fiel... CONSPECTUS:The ability to concentrate light at the nanoscale and produce extremely high local electromagnetic(EM)fields makes plasmonics a promising and rapidly developing research area.In the region with high EM field intensity(usually called the“hot spot”),various processes can be significantly enhanced,including spectroscopy,luminescence,catalysis,etc.However,only coinage metals(material limitation)with nanoscale roughness(morphological limitation)exhibit significant plasmonic effects under the visible light region,which greatly hinders wider and further applications of plasmonics.Constructing plasmonic core−shell materials by coating a second material onto the surface of a plasmonic metal core is a potential solution to these limitations.The plasmonic core can amplify the signals and/or accelerate the processes of the shell materials or other substrates of interest,making plasmonic research on nonplasmonic materials possible,thus expanding the applications of plasmonics.Besides,through controllable synthesis,the size and composition of both the core and the shell can be tuned simultaneously and precisely.This offers huge possibilities to study and tune plasmonic structure−performance effects at the(sub)nanometer level,which would otherwise not be feasible. 展开更多
关键词 otherwise ROUGHNESS hinder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部