We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by ...We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by using Yetter-Drinfeld module algebras. As an application,we prove that the positive part of a quantum group admits idempotent Rota-Baxter algebra structures.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11201067)the Matching Fund for National Natural Science Foundation of China from Dongguan University of Technology(Grant No.ZF121006)
文摘We propose the notion of Hopf module algebra and show that the projection onto the subspace of coinvariants is an idempotent Rota-Baxter operator of weight-1. We also provide a construction of Hopf module algebras by using Yetter-Drinfeld module algebras. As an application,we prove that the positive part of a quantum group admits idempotent Rota-Baxter algebra structures.