In this work, the formation sites, helical parameters and hydrogen bond positions of Konjac glucomannan molecular helices were investigated using molecular dynamic simulation method. To our interest, the KGM chain is ...In this work, the formation sites, helical parameters and hydrogen bond positions of Konjac glucomannan molecular helices were investigated using molecular dynamic simulation method. To our interest, the KGM chain is mainly composed by local left and right helix struetttres. The formation sites of KGM chain might locate at the chain-segments containing acetyl groups, and the left helix is the favorable conformation of KGM. Temperature-dependent molecule conformation study indicates that the right helix is dominant when the temperature is lower than 343 K, above which, however, the left helix is dominating (right helix disappears). In addition, intramolecular hydrogen bonds in the left helix can be found at the -OH groups on C(2), C(4) and C(6) of mannose residues; comparably, the intramolecular hydrogen bonds in the right helix can be mainly observed at the -OH groups on C(4) and C(6) of the mannose residues and C(3) of the glucose residues. In conclusion, molecular dynamic simulation is an efficient method for the microscopic conformation study of glucomannan molecular helices.展开更多
[目的]建立非对称场流分离检测鲍内脏多糖的方法。[方法]采用非对称场流分离系统与静态光散射、光电二极管阵列和示差折光检测器联用技术分离表征鲍内脏多糖。以0.05 mol/L Na NO3[含0.02%(W/V) Na N3]为流动相,研究横向流速和样品浓度...[目的]建立非对称场流分离检测鲍内脏多糖的方法。[方法]采用非对称场流分离系统与静态光散射、光电二极管阵列和示差折光检测器联用技术分离表征鲍内脏多糖。以0.05 mol/L Na NO3[含0.02%(W/V) Na N3]为流动相,研究横向流速和样品浓度对非对称场流分离多糖的影响,并利用动静态光散射测量鲍内脏多糖的分子特性(分子量、均方根旋转半径、分子构象、流体力学半径)。[结果]不同横向流速对多糖的分离表征有显著影响;一定范围内,不同多糖浓度对分离效果及分子特性结果无显著差异。鲍内脏多糖分子量为(25.40±1.78) k D,均方根旋转半径为(16.70±0.30) nm,流体力学半径为(143.23±15.49) nm,分子为无规则线团构象。[结论]非对称场流技术适用于鲍内脏多糖的分离检测。展开更多
基金supported by the National Natural Science Foundation of China (30871749,30901004)Natural Science Foundation of Fujian Province(2009J01061)
文摘In this work, the formation sites, helical parameters and hydrogen bond positions of Konjac glucomannan molecular helices were investigated using molecular dynamic simulation method. To our interest, the KGM chain is mainly composed by local left and right helix struetttres. The formation sites of KGM chain might locate at the chain-segments containing acetyl groups, and the left helix is the favorable conformation of KGM. Temperature-dependent molecule conformation study indicates that the right helix is dominant when the temperature is lower than 343 K, above which, however, the left helix is dominating (right helix disappears). In addition, intramolecular hydrogen bonds in the left helix can be found at the -OH groups on C(2), C(4) and C(6) of mannose residues; comparably, the intramolecular hydrogen bonds in the right helix can be mainly observed at the -OH groups on C(4) and C(6) of the mannose residues and C(3) of the glucose residues. In conclusion, molecular dynamic simulation is an efficient method for the microscopic conformation study of glucomannan molecular helices.
文摘[目的]建立非对称场流分离检测鲍内脏多糖的方法。[方法]采用非对称场流分离系统与静态光散射、光电二极管阵列和示差折光检测器联用技术分离表征鲍内脏多糖。以0.05 mol/L Na NO3[含0.02%(W/V) Na N3]为流动相,研究横向流速和样品浓度对非对称场流分离多糖的影响,并利用动静态光散射测量鲍内脏多糖的分子特性(分子量、均方根旋转半径、分子构象、流体力学半径)。[结果]不同横向流速对多糖的分离表征有显著影响;一定范围内,不同多糖浓度对分离效果及分子特性结果无显著差异。鲍内脏多糖分子量为(25.40±1.78) k D,均方根旋转半径为(16.70±0.30) nm,流体力学半径为(143.23±15.49) nm,分子为无规则线团构象。[结论]非对称场流技术适用于鲍内脏多糖的分离检测。