The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM...The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron.展开更多
The low-strength and high-brittleness of AZ91 cast magnesium alloy mainly result from the coarse divorced eutectic phase. To solve these problems, the annealing treatment of AZ91 cast magnesium alloy was carried out a...The low-strength and high-brittleness of AZ91 cast magnesium alloy mainly result from the coarse divorced eutectic phase. To solve these problems, the annealing treatment of AZ91 cast magnesium alloy was carried out at 415 ℃ and held for 24 h in this study and the alloy was then slowly cooled to room temperature in furnace. The microstructures of the alloy were observed using a metallographic microscope, a transmission electron microscopy and an emission scanning electron microscopy, respectively. The phase analysis was performed using the X-ray diffraction, and the tensile test of the specimen at ambient temperature was performed on a material test machine. The results indicate that the coarse divorced eutectic phase dissolves into the Mg matrix during the isothermal process, and the lamellarβ-Mg17AI12 phase precipitates from the magnesium solid solution with a type of pearlite precipitation during furnace cooling. Consequently, the spheroidizing treatment was carried out at 320℃ for 20 h following the annealing process and the lamellar β-Mg17A12 phase was spheroidized. Compared with the as-cast alloy, the strength and ductility of the AZ91 magnesium alloy are increased obviously after annealing treatment; the yield strength and tensile strength are increased to 137.8 MPa and 240.4 MPa from 102.9 MPa and 199.3 MPa, respectively; and the elongation is improved to 6.12% from 4.35%. After being spheroidized, the strength and hardness decrease a little, but the ductility is elevated to 7.23%. The nucleation, growth and spheroidizing mechanism of the lamellarβ-Mg12TAI12 phase were also discussed.展开更多
Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were co...Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were comparatively analyzed by scanning electron microscopy(SEM), energydispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The binding forces of the MAO, MAO+GO and MAO+GO+SDBS three coatings were measured by a scratch tester. The mechanical property of the three coatings was analyzed using the nano-indentation technique. The corrosion resistance of the coatings was tested by the electrochemical system in 3.5% NaCl solution. The photocatalytic activity of the prepared samples was evaluated by determining the degradation of methylene blue(MB) solution. The results showed that compared to the MAO coating, the morphologies and phase compositions of MAO+GO and MAO+GO+SDBS composite coatings were significantly different. These two composite coatings all had superior photocatalytic activity. Especially, the MAO+GO composite coating still had enhanced binding force and excellent corrosion resistance. Furthermore, the relationship between the microstructure and the properties of these three MAO coatings was analyzed.展开更多
A top electrophoresis coating was deposited on the surface microarc oxidation (MAO) modified ceramic coating on AZ31 magnesium alloy. Microstructure and corrosion resistance of this composite coating were studied by...A top electrophoresis coating was deposited on the surface microarc oxidation (MAO) modified ceramic coating on AZ31 magnesium alloy. Microstructure and corrosion resistance of this composite coating were studied by SEM, electrochemical potentiodynamic polarization, and acid corrosion test. The results showed that the composite coating with a top electrophoresis coating on the surface of ceramic coating exhibited a better corrosion resistance compared with the coating formed by chemical conversion film combined with electrophoresis process. Corrosive ions could permeate into the substrate with corrosion time, and the composite coating was firstly destroyed around the scratch. The formation of composite coating with a higher adhesive force due to the porosity of the ceramic coating contributed to the improved corrosion resistance property.展开更多
调制脉冲磁控溅射可通过改变强、弱离化阶段的脉冲强度和占空比等电场参量,大幅调控镀料粒子的离化率、沉积能量和数量,实现对沉积镀层形核与生长过程的精确把控。在非平衡闭合磁场条件下,采用调制脉冲磁控溅射技术,通过对其强离化脉冲...调制脉冲磁控溅射可通过改变强、弱离化阶段的脉冲强度和占空比等电场参量,大幅调控镀料粒子的离化率、沉积能量和数量,实现对沉积镀层形核与生长过程的精确把控。在非平衡闭合磁场条件下,采用调制脉冲磁控溅射技术,通过对其强离化脉冲阶段的脉冲宽度和靶功率进行调控获得持续增大的峰值靶功率密度,并在此条件下制备多组纯Ti镀层,对其微观形貌和力学性能进行了检测分析。结果表明,当强离化脉冲阶段的峰值靶功率密度由0.15 k W·cm^-2持续增大至0.86 k W·cm-2时,所制备的纯Ti镀层具有11 nm的平均晶粒尺寸,且较其他峰值靶功率密度条件下的制备镀层具有更为致密的组织结构、平整的表面质量(表面粗糙度Ra为11 nm)和良好的力学性能。展开更多
基金Funded by China Postdoctoral Science Foundation(Nos.2019M653703 and 2020T130523)Xi’an University of Technology Youth Nova Fund(No.101-451320005)。
文摘The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron.
基金supported by the National Science&Technology Pillar Program of China(Grant No.2006BAE04B05-1)the Natural Science Foundation of Shanxi Province(Grant No.2012JQ6020)the Doctor Foundation of Xian University of Science & Technology of China(2011QDJ017)
文摘The low-strength and high-brittleness of AZ91 cast magnesium alloy mainly result from the coarse divorced eutectic phase. To solve these problems, the annealing treatment of AZ91 cast magnesium alloy was carried out at 415 ℃ and held for 24 h in this study and the alloy was then slowly cooled to room temperature in furnace. The microstructures of the alloy were observed using a metallographic microscope, a transmission electron microscopy and an emission scanning electron microscopy, respectively. The phase analysis was performed using the X-ray diffraction, and the tensile test of the specimen at ambient temperature was performed on a material test machine. The results indicate that the coarse divorced eutectic phase dissolves into the Mg matrix during the isothermal process, and the lamellarβ-Mg17AI12 phase precipitates from the magnesium solid solution with a type of pearlite precipitation during furnace cooling. Consequently, the spheroidizing treatment was carried out at 320℃ for 20 h following the annealing process and the lamellar β-Mg17A12 phase was spheroidized. Compared with the as-cast alloy, the strength and ductility of the AZ91 magnesium alloy are increased obviously after annealing treatment; the yield strength and tensile strength are increased to 137.8 MPa and 240.4 MPa from 102.9 MPa and 199.3 MPa, respectively; and the elongation is improved to 6.12% from 4.35%. After being spheroidized, the strength and hardness decrease a little, but the ductility is elevated to 7.23%. The nucleation, growth and spheroidizing mechanism of the lamellarβ-Mg12TAI12 phase were also discussed.
基金Funded by the National Natural Science Foundation of China(No.51571114)the Key Research and Development Plan of Shaanxi Province-Industrial Project(No.2018GY-127)
文摘Micro arc oxidation(MAO) coatings doped with graphene oxide(GO) were prepared on pure titanium by adding GO and sodium dodecyl benzene sulfonate(SDBS) into a sodium silicate solution. The as-deposited coatings were comparatively analyzed by scanning electron microscopy(SEM), energydispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The binding forces of the MAO, MAO+GO and MAO+GO+SDBS three coatings were measured by a scratch tester. The mechanical property of the three coatings was analyzed using the nano-indentation technique. The corrosion resistance of the coatings was tested by the electrochemical system in 3.5% NaCl solution. The photocatalytic activity of the prepared samples was evaluated by determining the degradation of methylene blue(MB) solution. The results showed that compared to the MAO coating, the morphologies and phase compositions of MAO+GO and MAO+GO+SDBS composite coatings were significantly different. These two composite coatings all had superior photocatalytic activity. Especially, the MAO+GO composite coating still had enhanced binding force and excellent corrosion resistance. Furthermore, the relationship between the microstructure and the properties of these three MAO coatings was analyzed.
基金Funded by the National Natural Science Foundation of China(No.51201176)Industrialization Project of Education Department of Shanxi Province(No.2012JC13)
文摘A top electrophoresis coating was deposited on the surface microarc oxidation (MAO) modified ceramic coating on AZ31 magnesium alloy. Microstructure and corrosion resistance of this composite coating were studied by SEM, electrochemical potentiodynamic polarization, and acid corrosion test. The results showed that the composite coating with a top electrophoresis coating on the surface of ceramic coating exhibited a better corrosion resistance compared with the coating formed by chemical conversion film combined with electrophoresis process. Corrosive ions could permeate into the substrate with corrosion time, and the composite coating was firstly destroyed around the scratch. The formation of composite coating with a higher adhesive force due to the porosity of the ceramic coating contributed to the improved corrosion resistance property.
文摘调制脉冲磁控溅射可通过改变强、弱离化阶段的脉冲强度和占空比等电场参量,大幅调控镀料粒子的离化率、沉积能量和数量,实现对沉积镀层形核与生长过程的精确把控。在非平衡闭合磁场条件下,采用调制脉冲磁控溅射技术,通过对其强离化脉冲阶段的脉冲宽度和靶功率进行调控获得持续增大的峰值靶功率密度,并在此条件下制备多组纯Ti镀层,对其微观形貌和力学性能进行了检测分析。结果表明,当强离化脉冲阶段的峰值靶功率密度由0.15 k W·cm^-2持续增大至0.86 k W·cm-2时,所制备的纯Ti镀层具有11 nm的平均晶粒尺寸,且较其他峰值靶功率密度条件下的制备镀层具有更为致密的组织结构、平整的表面质量(表面粗糙度Ra为11 nm)和良好的力学性能。