Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage ...Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.展开更多
目的探讨经颅直流电刺激(transcranial direct current stimulation,tDCS)促进脑缺血小鼠内源性海马神经发生的作用及其可能机制。方法采用双侧颈总动脉夹闭法建立小鼠急性脑缺血模型,HE染色检测小鼠海马病理形态学改变;Morris水迷宫以...目的探讨经颅直流电刺激(transcranial direct current stimulation,tDCS)促进脑缺血小鼠内源性海马神经发生的作用及其可能机制。方法采用双侧颈总动脉夹闭法建立小鼠急性脑缺血模型,HE染色检测小鼠海马病理形态学改变;Morris水迷宫以检测小鼠学习记忆功能;免疫荧光染色观察海马区BrdU、DCX以及BrdU/NeuN阳性细胞表达以检测小鼠海马神经发生;以qRT-PCR和Western blot法分别检测小鼠海马NMDAR亚基NR2a、NR2b的mRNA及蛋白表达。结果脑缺血小鼠海马CA1区神经元损伤明显(P<0.01),学习记忆功能显著下降(P<0.01),提示脑缺血模型成功建立。同时,海马BrdU,DCX和BrdU/NeuN阳性细胞表达明显增加(P<0.01),表明脑缺血后海马出现神经发生。tDCS治疗后可显著改善CA1区病理损害,提高学习记忆能力,并促进神经发生。同时,海马NR2a、NR2b的mRNA及蛋白表达水平也上调(P<0.05或P<0.01)。结论tDCS可促进脑缺血后小鼠海马神经发生,改善学习记忆功能,其机制可能与上调NR2a、NR2b表达相关。展开更多
Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional...Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P〉0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P〈0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this effect was accompanied by significantly reduced BDNF expression in the cortex and hippocampus.展开更多
基金Supported by the Key Research Subject of Economic Census of Xinjiang Production and Construction Corps(201004)the President Fund for Natural Science Project of Tarim University(TDZKSS09010)+1 种基金the Quality Project of Tarim University(TDZGKC09085)the Quality Project of Tarim University(TDZGTD09004)
文摘Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.
文摘目的探讨经颅直流电刺激(transcranial direct current stimulation,tDCS)促进脑缺血小鼠内源性海马神经发生的作用及其可能机制。方法采用双侧颈总动脉夹闭法建立小鼠急性脑缺血模型,HE染色检测小鼠海马病理形态学改变;Morris水迷宫以检测小鼠学习记忆功能;免疫荧光染色观察海马区BrdU、DCX以及BrdU/NeuN阳性细胞表达以检测小鼠海马神经发生;以qRT-PCR和Western blot法分别检测小鼠海马NMDAR亚基NR2a、NR2b的mRNA及蛋白表达。结果脑缺血小鼠海马CA1区神经元损伤明显(P<0.01),学习记忆功能显著下降(P<0.01),提示脑缺血模型成功建立。同时,海马BrdU,DCX和BrdU/NeuN阳性细胞表达明显增加(P<0.01),表明脑缺血后海马出现神经发生。tDCS治疗后可显著改善CA1区病理损害,提高学习记忆能力,并促进神经发生。同时,海马NR2a、NR2b的mRNA及蛋白表达水平也上调(P<0.05或P<0.01)。结论tDCS可促进脑缺血后小鼠海马神经发生,改善学习记忆功能,其机制可能与上调NR2a、NR2b表达相关。
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30801311), Beijing NOVA Program (No. 2008B60), Beijing Natural Science Foundation (No. 7073091), National Basic Research Program (973 Program, No. 2007CB507400) and National S&T Major Special Project on Major New Drug Innovation (No. 2009ZX09301-003).
文摘Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P〉0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P〈0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this effect was accompanied by significantly reduced BDNF expression in the cortex and hippocampus.