目的探讨抑郁症与精神分裂症患者脑功能活动及认知功能损害的特点及其相关性。方法对健康对照组、抑郁症组及精神分裂症组(每组各36例)患者进行数字符号测试(digital symbol test,DST)、数字广度测试(digital span test,DSPT)和语言流...目的探讨抑郁症与精神分裂症患者脑功能活动及认知功能损害的特点及其相关性。方法对健康对照组、抑郁症组及精神分裂症组(每组各36例)患者进行数字符号测试(digital symbol test,DST)、数字广度测试(digital span test,DSPT)和语言流畅性测试(verbal fluency test,VFT),同时行静息态功能磁共振成像(resting-state functional magnetic resonance imaging,rs-fMRI)扫描,对rs-fMRI数据进行常规预处理,计算3组局部一致性(regional homogeneity,ReHo)及比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)值,分别比较3组认知功能测评及脑功能活动特点,采用Pearson相关分析认知功能与脑功能活动的相关性。结果(1)与健康对照组(68.75±10.40、9.22±1.07、5.95±1.67、22.39±4.53)比较,抑郁症组(60.86±10.75、8.06±0.80、5.19±1.12、19.36±2.85)与精神分裂症组(46.64±9.50、7.50±0.91、4.08±1.05、14.86±3.78)DST、DSPT顺背、DSPT倒背及VFT评分均下降,精神分裂症组较抑郁症组下降更显著(F=2.39、1.43、1.52、2.16,均P<0.01);(2)3组ReHo值存在差异的脑区为左侧豆状核-脑岛-罗兰岛盖(F=22.1,P<0.001,AlphaSim校正,体素个数>99),与健康对照组相比,抑郁症组在该脑区ReHo值升高,与抑郁症组相比,精神分裂症组在该脑区ReHo值降低。3组fALFF值存在差异的脑区为左侧顶上回及双侧脑岛-豆状核(F=28.46,13.12,P<0.001,AlphaSim校正,体素个数>90),与健康对照组和抑郁症组相比,精神分裂症组在左侧顶上回及双侧脑岛-豆状核的fALFF值均升高(P<0.05);(3)相关分析显示,抑郁症患者DST评分与左侧豆状核-脑岛-罗兰岛盖区ReHo值呈负相关(r=-0.38,P=0.02);精神分裂症患者DSPT倒背评分与脑岛-豆状核的fALFF值呈负相关(r=-0.39,P=0.02)。结论精神分裂症较抑郁症患者认知功能损害更为严重;抑郁症及精神分裂症患者顶叶、脑岛及纹状体活动异常,这些功能活动异常脑区可能是区分精神分裂症与抑郁症的核心脑区,且与认知功能损害密切相关。展开更多
目的:探讨抑郁症与精神分裂症患者纹状体功能连接特点及其与临床症状的相关性。方法:纳入2015年3月至2019年2月于武汉大学人民医院精神卫生中心就诊的抑郁症患者(抑郁症组,n=36)和精神分裂症患者(精神分裂症组,n=36),以及性别、年龄及...目的:探讨抑郁症与精神分裂症患者纹状体功能连接特点及其与临床症状的相关性。方法:纳入2015年3月至2019年2月于武汉大学人民医院精神卫生中心就诊的抑郁症患者(抑郁症组,n=36)和精神分裂症患者(精神分裂症组,n=36),以及性别、年龄及受教育程度与患者组相匹配的健康对照者(对照组,n=36)进行HAMD 17、HAMA和PANSS评估以及静息态功能磁共振成像(resting-state functional magenetic resonance imaging,rs-fMRI)扫描,计算3组局部一致性(regional homogeneity,ReHo)值及比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)值,基于方差分析结果将异常脑区进行叠加得到重叠脑区;最后以重叠脑区作为感兴趣区域(region of interest,ROI)进行全脑功能连接分析,采用Pearson相关分析异常脑区的功能连接值与抑郁症及精神分裂症患者临床症状的相关性。结果:3组ReHo值存在差异的脑区为左侧纹状体延伸至脑岛及罗兰岛盖(AlphaSim校正,P<0.001,体素个数>99);3组fALFF值存在差异的脑区为左侧顶上回及双侧脑岛延伸至纹状体(AlphaSim校正,P<0.001,体素个数>90),3组ReHo及fALFF值存在差异的脑区叠加后交集的脑区为左侧纹状体;以重叠脑区作为感兴趣区域进行全脑功能连接分析显示,3组左侧纹状体与左侧颞下回存在功能连接异常(AlphaSim校正,P<0.001,体素个数>42);事后两两比较显示,与对照组(0.24±0.03)比较,抑郁症组(0.15±0.02)与精神分裂症组(0.09±0.01)左侧壳核与颞下回功能连接均减弱;而精神分裂症组较抑郁症组左侧壳核与颞下回功能连接减弱更为显著(P<0.05)。Pearson相关分析显示左侧颞下回功能连接值与抑郁症组HAMD 17评分无相关(r=-0.02,P=0.93);与精神分裂症组PANSS阳性评分呈负相关(r=-0.40,P=0.02)。结论:抑郁症及精神分裂症患者均存在纹状体异常功能连接的特点,且左侧纹状体与左侧颞下回功能连接异常与精神分裂症阳性症状密切相关。纹状体脑功能活动及其与颞下回功能连接异常在抑郁症与精神分裂症的病理机制中可能发挥重要作用。展开更多
The brain is organized as a hierarchy of complex networks on different temporal and spatial scales. The complex con- nectivities within the brain are presented in the anatomical architecture as well as dynamic activit...The brain is organized as a hierarchy of complex networks on different temporal and spatial scales. The complex con- nectivities within the brain are presented in the anatomical architecture as well as dynamic activity. There have long been efforts to make a connection map of the brain [1], and this has now been achieved with the establishment of the connectome [2]. The connectome framework is of central significance for understanding how the brain works at a detailed level [3], however, the connectome can only pro- vide a structural description of the brain [2]. It is essential to understand the brain through integrating multi-level net- work features obtained using various functional and ana- tomical brain imaging technologies on different scales,展开更多
Understanding how neural circuits contribute to cognitive differences between humans and other species, including macaque monkeys, is a major issue in neuroscience. Lan- guage and tool use are the most prominent diffe...Understanding how neural circuits contribute to cognitive differences between humans and other species, including macaque monkeys, is a major issue in neuroscience. Lan- guage and tool use are the most prominent differences be- tween humans and other primates. Many neuroimag- ing-based studies have explored the brain mechanisms un- derlying language to reveal the origin of human evolution. Leroy et al. found human-specific asymmetry in the superi- or temporal sulcus (STS) by analyzing the magnetic reso- nance images (MRI) of humans and chimpanzees [1[, and resting-state functional connectivity analyses have revealed that the functional coupling between the posterior superior temporal gyrus (STG) and inferior frontal gyrus (IFG) is more prominent in humans than in macaques [2].展开更多
文摘目的探讨抑郁症与精神分裂症患者脑功能活动及认知功能损害的特点及其相关性。方法对健康对照组、抑郁症组及精神分裂症组(每组各36例)患者进行数字符号测试(digital symbol test,DST)、数字广度测试(digital span test,DSPT)和语言流畅性测试(verbal fluency test,VFT),同时行静息态功能磁共振成像(resting-state functional magnetic resonance imaging,rs-fMRI)扫描,对rs-fMRI数据进行常规预处理,计算3组局部一致性(regional homogeneity,ReHo)及比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)值,分别比较3组认知功能测评及脑功能活动特点,采用Pearson相关分析认知功能与脑功能活动的相关性。结果(1)与健康对照组(68.75±10.40、9.22±1.07、5.95±1.67、22.39±4.53)比较,抑郁症组(60.86±10.75、8.06±0.80、5.19±1.12、19.36±2.85)与精神分裂症组(46.64±9.50、7.50±0.91、4.08±1.05、14.86±3.78)DST、DSPT顺背、DSPT倒背及VFT评分均下降,精神分裂症组较抑郁症组下降更显著(F=2.39、1.43、1.52、2.16,均P<0.01);(2)3组ReHo值存在差异的脑区为左侧豆状核-脑岛-罗兰岛盖(F=22.1,P<0.001,AlphaSim校正,体素个数>99),与健康对照组相比,抑郁症组在该脑区ReHo值升高,与抑郁症组相比,精神分裂症组在该脑区ReHo值降低。3组fALFF值存在差异的脑区为左侧顶上回及双侧脑岛-豆状核(F=28.46,13.12,P<0.001,AlphaSim校正,体素个数>90),与健康对照组和抑郁症组相比,精神分裂症组在左侧顶上回及双侧脑岛-豆状核的fALFF值均升高(P<0.05);(3)相关分析显示,抑郁症患者DST评分与左侧豆状核-脑岛-罗兰岛盖区ReHo值呈负相关(r=-0.38,P=0.02);精神分裂症患者DSPT倒背评分与脑岛-豆状核的fALFF值呈负相关(r=-0.39,P=0.02)。结论精神分裂症较抑郁症患者认知功能损害更为严重;抑郁症及精神分裂症患者顶叶、脑岛及纹状体活动异常,这些功能活动异常脑区可能是区分精神分裂症与抑郁症的核心脑区,且与认知功能损害密切相关。
文摘目的:探讨抑郁症与精神分裂症患者纹状体功能连接特点及其与临床症状的相关性。方法:纳入2015年3月至2019年2月于武汉大学人民医院精神卫生中心就诊的抑郁症患者(抑郁症组,n=36)和精神分裂症患者(精神分裂症组,n=36),以及性别、年龄及受教育程度与患者组相匹配的健康对照者(对照组,n=36)进行HAMD 17、HAMA和PANSS评估以及静息态功能磁共振成像(resting-state functional magenetic resonance imaging,rs-fMRI)扫描,计算3组局部一致性(regional homogeneity,ReHo)值及比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)值,基于方差分析结果将异常脑区进行叠加得到重叠脑区;最后以重叠脑区作为感兴趣区域(region of interest,ROI)进行全脑功能连接分析,采用Pearson相关分析异常脑区的功能连接值与抑郁症及精神分裂症患者临床症状的相关性。结果:3组ReHo值存在差异的脑区为左侧纹状体延伸至脑岛及罗兰岛盖(AlphaSim校正,P<0.001,体素个数>99);3组fALFF值存在差异的脑区为左侧顶上回及双侧脑岛延伸至纹状体(AlphaSim校正,P<0.001,体素个数>90),3组ReHo及fALFF值存在差异的脑区叠加后交集的脑区为左侧纹状体;以重叠脑区作为感兴趣区域进行全脑功能连接分析显示,3组左侧纹状体与左侧颞下回存在功能连接异常(AlphaSim校正,P<0.001,体素个数>42);事后两两比较显示,与对照组(0.24±0.03)比较,抑郁症组(0.15±0.02)与精神分裂症组(0.09±0.01)左侧壳核与颞下回功能连接均减弱;而精神分裂症组较抑郁症组左侧壳核与颞下回功能连接减弱更为显著(P<0.05)。Pearson相关分析显示左侧颞下回功能连接值与抑郁症组HAMD 17评分无相关(r=-0.02,P=0.93);与精神分裂症组PANSS阳性评分呈负相关(r=-0.40,P=0.02)。结论:抑郁症及精神分裂症患者均存在纹状体异常功能连接的特点,且左侧纹状体与左侧颞下回功能连接异常与精神分裂症阳性症状密切相关。纹状体脑功能活动及其与颞下回功能连接异常在抑郁症与精神分裂症的病理机制中可能发挥重要作用。
基金partially supported by the National Basic Research Program of China(2011CB707800)the Strategic Priority Research Program of the Chinese Academy of Sci-ences(XDB02030300)the National Natural Science Foundation of China(91132301,81270020)
文摘The brain is organized as a hierarchy of complex networks on different temporal and spatial scales. The complex con- nectivities within the brain are presented in the anatomical architecture as well as dynamic activity. There have long been efforts to make a connection map of the brain [1], and this has now been achieved with the establishment of the connectome [2]. The connectome framework is of central significance for understanding how the brain works at a detailed level [3], however, the connectome can only pro- vide a structural description of the brain [2]. It is essential to understand the brain through integrating multi-level net- work features obtained using various functional and ana- tomical brain imaging technologies on different scales,
文摘Understanding how neural circuits contribute to cognitive differences between humans and other species, including macaque monkeys, is a major issue in neuroscience. Lan- guage and tool use are the most prominent differences be- tween humans and other primates. Many neuroimag- ing-based studies have explored the brain mechanisms un- derlying language to reveal the origin of human evolution. Leroy et al. found human-specific asymmetry in the superi- or temporal sulcus (STS) by analyzing the magnetic reso- nance images (MRI) of humans and chimpanzees [1[, and resting-state functional connectivity analyses have revealed that the functional coupling between the posterior superior temporal gyrus (STG) and inferior frontal gyrus (IFG) is more prominent in humans than in macaques [2].