We demonstrate radiation-pressure-driven mechanical oscillations from high optical quality factor silica microdisk resonators on chip. Mechanical quality factors of 3520 in air and 12540 in vacuum for the fundamental ...We demonstrate radiation-pressure-driven mechanical oscillations from high optical quality factor silica microdisk resonators on chip. Mechanical quality factors of 3520 in air and 12540 in vacuum for the fundamental radial breathing modes are obtained from 73 μm-diarneter silica microdisks with mechanical frequencies of -51 MHz. The measured mechanical oscillation threshold powers for the input light are determined to be 62.5 μW in air and down to 26.6 μW in vacuum.展开更多
We demonstrate ultralow-threshold thulium-doped, as well as thulium-holmium-codoped, microtoroid lasers on silicon chips, operating at the wavelength of around 2 ?m. High quality factor whispering gallery mode(WGM) mi...We demonstrate ultralow-threshold thulium-doped, as well as thulium-holmium-codoped, microtoroid lasers on silicon chips, operating at the wavelength of around 2 ?m. High quality factor whispering gallery mode(WGM) microtoroid cavities with proper thulium and holmium concentrations are fabricated from the silica sol-gel films. The highly confined WGMs make the microcavity lasers operate with ultralow thresholds, approximately 2.8 ?W and 2.7 ?W for the thulium-doped and the thulium-holmium-codoped microlasers, respectively.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2012CB921804 and 2011CBA00205)the National Natural Science Foundation of China(Grant Nos.61435007,11104137 and 11321063)
文摘We demonstrate radiation-pressure-driven mechanical oscillations from high optical quality factor silica microdisk resonators on chip. Mechanical quality factors of 3520 in air and 12540 in vacuum for the fundamental radial breathing modes are obtained from 73 μm-diarneter silica microdisks with mechanical frequencies of -51 MHz. The measured mechanical oscillation threshold powers for the input light are determined to be 62.5 μW in air and down to 26.6 μW in vacuum.
基金supported by the National Key Basic Research Program of China(Grant Nos.2012CB921804 and 2011CBA00205)the National Natural Science Foundation of China(Grant Nos.61435007 and 11321063)
文摘We demonstrate ultralow-threshold thulium-doped, as well as thulium-holmium-codoped, microtoroid lasers on silicon chips, operating at the wavelength of around 2 ?m. High quality factor whispering gallery mode(WGM) microtoroid cavities with proper thulium and holmium concentrations are fabricated from the silica sol-gel films. The highly confined WGMs make the microcavity lasers operate with ultralow thresholds, approximately 2.8 ?W and 2.7 ?W for the thulium-doped and the thulium-holmium-codoped microlasers, respectively.