Application of silicon in high capacity electrodes of lithium ion battery suffers from stress effects and, in turn, affects voltage performance of battery. This paper established a reaction-diffusion-stress coupled mo...Application of silicon in high capacity electrodes of lithium ion battery suffers from stress effects and, in turn, affects voltage performance of battery. This paper established a reaction-diffusion-stress coupled model and investigated the stress induced voltage hysteresis with consideration of diffusion induced stress, surface effects and interparticle compression. It was found stress and stress induced voltage hysteresis depended on particle size. In big particles, diffusion induced stress is dominant and leads to significant hysteresis in both stress and voltage, indicating energy dissipation due to stress effects. In small particles, e.g.,radius of dozens nanometers, diffusion induced stress was negligible while surface effects played dominant role, leading to nearly vanished voltage hysteresis shifting away from equilibrium potential. According to calculation, particle sizes around 100 nm are appropriate choice for electrode design as both diffusion induced stress and surface effects are insignificant. Finally,interparticle compression pushed the stress hysteresis to compressive side and led to early termination of lithiation at cut-off voltage. Denser electrode would enhance this effect. It indicated that there must be a limit of mixing ratio of silicon because higher interparticle compressive stress due to more introduced silicon would impede the battery from fully charged.展开更多
基金the financial supports of the National Natural Science Foundation of China (Grant Nos. 11672170, 11332005, 11702166)the Natural Science Foundation of Shanghai (Grant No. 16ZR1412200)+1 种基金the support provided by the 2017 Monash University Malaysia Strategic Large Grant Scheme (Grant No. LG-2017-04-ENG)Advanced Engineering Programme Cluster funding
文摘Application of silicon in high capacity electrodes of lithium ion battery suffers from stress effects and, in turn, affects voltage performance of battery. This paper established a reaction-diffusion-stress coupled model and investigated the stress induced voltage hysteresis with consideration of diffusion induced stress, surface effects and interparticle compression. It was found stress and stress induced voltage hysteresis depended on particle size. In big particles, diffusion induced stress is dominant and leads to significant hysteresis in both stress and voltage, indicating energy dissipation due to stress effects. In small particles, e.g.,radius of dozens nanometers, diffusion induced stress was negligible while surface effects played dominant role, leading to nearly vanished voltage hysteresis shifting away from equilibrium potential. According to calculation, particle sizes around 100 nm are appropriate choice for electrode design as both diffusion induced stress and surface effects are insignificant. Finally,interparticle compression pushed the stress hysteresis to compressive side and led to early termination of lithiation at cut-off voltage. Denser electrode would enhance this effect. It indicated that there must be a limit of mixing ratio of silicon because higher interparticle compressive stress due to more introduced silicon would impede the battery from fully charged.